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FOREWORD

This report consists of seven parts, originally written so that each
could stand alone as a separate article or technical note, Each part
contains its own abstract, which is placed at the start of that part.
Likewise, a detailed table of contents is placed at the start, and ref-
erences at the end of each part.
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ABSTRACT

™ From measured waveforms Lt has bsen deternined that
the eleciromagnetic pulse from a nﬁclear detonation 1is
assoclated with the graduai establishmant.of a large
dipole moment, walch remains suspoended in the atmcsphefe
et the conclusion of the EM? vavaform, Fronm tha gradual
grovth and the large magnitude, it is inferred that the
source~current reglion 1is largs, and that retardation
across this source-current reglon is an inportent aspzst
of the EIP phenomenou, Retordabtion is elso imporbtant
in individual proczsses, sincs ths primary Complon
electrons are rclativistic, and the foriard directivity
of their radiated electroﬁagnetic fields c2a bs attributed
to retardation‘and can be eaccmpassed in a distﬁibutedn-
seurrent plefure which allows correctly for reberdgtion._. ... __.
When retardation 1s properly incorporated, 1t is found that
for early times there is a nomentery radiéi electric field |
- - projected above the-defonation center, with the polearity-
to driﬁe secondary electrons upward, thereby contridbubting
substantislly to the EMP dipole mbment, The AWL non~caucal
solutlon gives the wroﬁa polarity for this early-tine
-radlal field, but the non-causal parts of the AFJL progran
can.be rqplaced by & causal 1tgra;ion proceéﬁre, ﬁlthout
aeffecting the parts of the preogranm which deal with.electron
ettachnent and air chemistry, and with the gamuwa rays and

the primary source current,
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1. INTRODUCTION

Previous reports in this serieél’z’3 have dealt
with three aspscts of the EMP (electromagnetioc pulse)
problen, There is first the phenomenologlccl aspect,
From measured waveforms 1t cz=n Le determined that a
nuclear explosion in the lower atmospher: estoblishes
a dipole.moment in the air with a negative polaurity.

The detornation ralses negative charge and lesves it
suspended in the alr, The time required for this process
to take place is on the order of 100 micréséconds,

being longer for the larger-yleld detonations, shorte?

for those of small yield.

The grouwth of the dipole moment 1s gradual, not

abrupt, Also, detalled analysis of the measured waveforms

(Chapter II of Reference 2) shows that the negative charge - -

remains suspended at the end of the EMP waveform, decaying
to zero only after a time which is very long in comparison
with the duration of this'very-low-freqﬁenoy pulse, These
two observations, besed on the measured waveforms, lead to

the inference that the scurce ocurrents are not mainly

oonfingd to the near vieinity of the detonation point, but‘

are distributed over distances measured in kilomoters,
at least iIn the vertical direction. above the detonation

oenter,

1 i
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‘The seoond aspect of the EMP problem which has been

deslt with in detall 1s the relativistic nature of the
primary Compton currents which provide the driving

éourcé for the maln EMP phenonena, Gamma rays from the
nuclear detonation produce Conpton electrons through
collisions with alr molecules, Because of the blouckage
by the ground under tihe detonation point, most of these
Compton electrons are directed upward, and they thus
contribute to the establishment of a negative dipole
moment, At the same time, their moéion (inclvdir.g thelr
initial acceleration at the moment of ejlection from an
air molecule, and their more gradual deceleration & they
are siowed by lonizinz collisions with air molecules)
will produée electric and magnetic flelds which can
act on other elect;ons in the viocinity., These othef Coemme o
electrons include nét ohly the primary Comrton electrons
but_aiso secondary electrons'produced b& the ionizins‘
collisions which slow the primgry Conmpton electrons,
and other secondary electrons released through the

X-ray .
photolonizing action oﬁ/visible,and ultraviolet radlation

emitted by the nuclear detonation,

Because of the relativistic velocities of the

e ey g e

Compton.electrons; there 1is a forward directivity in the

electromagnstio fields that they genérate, This forward
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direotivity is incorporated in the field expressions
oﬁtained from the Liénard-Wiechert potentials.u
However, these potentials were in turn derived from

& distributed-charge plotufe, in which the source
electron was assuncd to be a compact distribution of
moving eleotrical charge, The retardation acrcss this
charge distribuiior. then accounts for the forwrard
41reot1v1ty asseclath wlth the relativistically-muving
eleciron, Thus the relativisiic nature of'the primaxry
Compton curcents can ,e incorporated dir:ctly, through
the use of the Liénard-\Wiechert fields: or indlcectly,

through the careful allowance for retardation across the

full EMP source-cﬁrrent distribution.

The treatment of the secondary electrons comprises
the third aspect of the EMP problem whioch has been -
oconsidered in the previous reports in this series,
These secondary electrons aré produced by lonlzations
slons the Compton tracks, and by other ionization
processes such as the pﬁotoelectrio ejJection of
electrons from elir ﬁolecules by.iqbldent ulpfaviolet,
visible, and X-ray photons, The secondary electrons,
once released, will move in response to the loeal
electromagnetic field, and will in turn make thelr .

contribution to this field distribution,
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The field contributions, made by the secondary
electrons in their movement in the local fields,

will be retarded-field contr;bubions, Just as the

flelds generated by the COmbton electrons were retarded

fields, An integral equation results, whose solution

glves the distribution of the ezcondary-electron currents,

Before this integral quation can be writtei. doiwml in
detall, it is necessary that expressions be given for
theo retafded fields assoclated with a particular
source-current distrihbution., Once tﬁese expressicns

have been found, the integral-equation problem Lan bs

given expliocitly, and solved by numerical or analytical

methods,

" There is a hidden hazard in attenpts to solve
"Maxwell's squations by numerical methods whisch do not

incorporate retardation explicitly. The hazard is

attributable to the fact that Maxwell's equations admit-
an advenced-field solution in addition to the physiéally
acceptable retarded-field solution, A general solution,
therafore, will be a superposition of fetarded and advanced

solutions, unless speclal precautions are taken to exclude

the advanced solutions from the beginninz., As wlll be

showm later, one numerical method which has actually been
programmed at great expense violates this basic paysical
causality requirexment, Fortunately, much of the progran

can be retalned when the non-causal solutlon 1s converted

. to a causal solution,

A e e - Y
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2. GROWTH OF DIPOLE MOMENT

Ag deteruined from two succeséive integrations
of an. experimentally-measured wa.vef’orm,2 the dipole
moment associated with the EliP source-current distribution
has a time dependence which shows a gradual growill, on
e time scale of the order of 100 microseconds. (In some

cases there is an overshoot, but this also is gradual on

the same time soale, and the attainment of the final

dipole momeint, after the moderate overshoot, coincides

ﬁith the reduoction of the vertical current flow to zero, )
This 100-nicrosecond time scale can be compared with the
one-mlcrosecond time écale that characterizes the actual
nuclear detonation.s It 1s apparent that the 100-m1‘cx_'osecond
radlated waveforn, thousﬁ’lnltiated'by the one-mlicrosecond
detonation, does not have 1ts time dependence determined

by the time scale of the detonation's chain reaction, but

by some other phenomenon or phenonena,

. After the prompt effects of the nuclear chain reaction,
.there are delayed reactions, in which gamma-rays are emitted
from the detonation products, Hoilever, these delayed
emissions decay with a time constant of the order of

. relatively
one microsecond, and will be/insignificant long before the

lapse of 100 microseconds,
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The prompt Compton curreants, associated with the
prompt gamma-rays from the nuclear chain reaction, wlli
bg c&hfineﬁ in time to ‘dan' interval associated wifh the
detonatlion itself, However, the propagation time must be
aedded, since the Compton cjJections at a distance r from
the detonation center will occur at a time which is later,
by the time ;ntervai r/c, than the moment at ﬁhich the
ejecting ganma-rays were emlitted by the nuclear reection
at »r=0, The attenuaﬁion in ailr of the pertinent
gamma;rays leads to an attehuation with tiﬁe wvhich has
about the same time conctant, 6ne microsecond; es the
delayed gamma-ray emissions, Thus the gamma-ray propagation
time will be inadequate to account for tﬁe slow growth of
the dipole moment associated with the electromagnetic
effects of a nuclear detonation'which is in the lower

atmosphere, near the ground,

1t can be noted, however, that the range of the
ultraviolet radiation from thé-detonation is substantlally
- greater than the range of the high-energy gammaaraySf‘
responsible for the Compton ejections, Furthermore,
the fo;wérd directivity of the ejeéted Compton electrons
leads to a voltage pulse which is proJected4outward at tﬁe
felocity of 1isht, far beyond the the distgnce reéched'by‘
the Comﬁton electrons themselves, Tnls voltage pulse
has the pqlarity to drive secbhdary eleétrons iIn the same

radial direction in which the Compton electrons were moving,

L)
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' vdltase
and in this way the/pulse has the effect of extending

greatly the range to which_the upward electron motion

i o _ reaches, By extending the range of the vertical current,
| - -this hybrid phenomenon (radial electric field from
inner Compton electrons, multipvlied by conductivity
" from outer photolionization proc;sses) provides a mechanisn — -
which can explain the obsarved time scale four the growth
¢f the dipole moment associatedAwith the EMP souree:

current distribution. ' |

In addition there may be higher-order int=raction
processes, in which the secondary-eleotroh motion
at early times contributes fields which lead to
secondary-clectron motidn at 1ater.t1mes. The computation
of these complicated relaxation processes must be left to
analytic or_numgrical methods, and.cannot readily 5e,
foreseen by way of general principles, For the computation - .
to have physical sisnificaﬁpe,ﬂhowever, it is essentlal
that retardation be incorporated correétly, so that
éffects will not precede thelr causes, and the propagation
of electromagnetic fields will not be faster than the
veloclity of light,
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3. RELATIVISTIC EFFECTS

2,3

" analyzed relativistically with the use of the field

In earlier reports two source models were

expressions obtained from the Lifnard-Wiechzrt potentials,

One of these models, called the shell modeds, was.cafried
to the point of waveform calculation, In tnis model,

& spherlgal éhell of electrons 1s ejected at nae radiel
distence, moves outward at a relativistic veloclihy, end
theh is deposited at a Jlarger» radius disﬁance. That 1s,
the electrons composing this moviﬁg shell have all been
eJected simultaneously from an inner spherléal surface,
2ll move radlally outward at the same velocity, and_are
simultanecusly deposited on aﬁ outer spherical surface;
The inner shell is inltially uncharged, so fhat when
the negatively-charged electrons are ejeocted, they

" leave behind a stationary shell of §osit1ve ions,

Two different symmetries were consldered, Oné was
spﬁerical syametry, with no angular debéndence of the
densltf of electrons on the'ﬁoving shell, The other
was cosine as&mmétry;‘wtth the electron densitymset-
'proportionai to the cosine-of thé_polar anglg on the
spnerical surface, (This mekes the lower hemisphere
positively charged, with.positfons,or with the imeges

of the upper electrons in a horizontal ground plane,)
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For the caselof spherical symmetry, the results of

tha relativistic calculations were identical with the

results obtainable from Gauss's law of the electrostatic

fleld, Of the six comporients of the electric and magnetic

flelds, only the radial component of the electric field

does not vaniéh by symmetry. Furthermore,'for an
observation point outside the outer spﬁerigal surface,
the magnitude of thls radial component, Er’ vanishes at
511 vimes, when the contributions of the moving -lectrons,

the positive ions left behind, .and the stopper electrons

‘that have reashed the outer spherical shell, are all

added together, These separate contributions, however,

do not vanish individually,

It is instructive to examine the role pluyed by
retardation across the source region, Becaﬁée o:ithe
finite propagation velocity of electromegnetic effects,
an observer cannot be sure tﬁat the shell-nmodel source
is actually spherically symmetric until enpugh time hes

elapsed to permit him to receive signals from the

- oharged particlés on the fer side of the source reglion,

i s
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Figure 1 shows an early stage }n the deyelopment
of the shell model, What is showniis the source
distribution contributing to the field component Er
.at a'particglar abserVation r2int, as the source would
appeaf to that observer with retardation taken into
account, At the early moment depicted here, the observer
1s receiving the fields emitted by a sector of moving
electrons, on the near sicde of the shell-model source,
and the electrostatic flelds from the posltiveAinné |
'wh;bh they left behind on.the inner spherical surface,
It is too early for the observer to receive the electro-
static fields from any of the stationary_negatlvg lons
that will be formed when the moving electrons coie,to

rest on the outer spherical surface,

Figure 2 shows a somewhat later stage. The ﬁearer-n.w

‘electrons have come to rest, forming a sector of negative
{ons which is bounded by the dashed lines in the'figure.
~A band of moving electrons is glso'visible, end the
exposed positive lons on the inner spherlcél surface

~-now cover a sector which.is greater than a hemisphere,
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Flgure 4., The shell model, as seen from the observation
point at an early instant, before any of the stopped
electrons (negative ions) can be seen,
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z.
A
Observétion
° Point
Moving -7 /
Electrons ,- Negative
// Ions /
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Ions

4
_-"Noving
.-~ Electrons

—

Figure 2, The shell moée13"és~seen from the observation
point at a moment somewhat later than the moment shown
in Fig. I, Some of the electrons have reached the outer
shell, forming negative ions, and moré than half of the
. positive lons on the inner shell have been exposed,

¥,

oy o < et b2 L

Filasp




—

R —

Page 16

Figure 3 is a still later stage, The full inner

shell of positive icns 1is exposed, and most of thé

. sjeoted electrons have reached the outer shell and have

oome to rest és negative ions, A small sector of moving
electrons remains visible, but these will shortly resaoih

the outer shell and stop there,

It shorild be emphasized that the time scale for
these three figures represents the observer's time ccale,
qnd the source distributions are those that he would sense.
The appearance of asymmetry is solely due to the dlfferenpeé

in rropagation time from different parts of the.source to

the observation point, Tne source distribution 1tself 1s

actually spherically symmetric in this instance,

For this shell model the separate contributions of
the positivé and negative ions and the moving electrons,
inoluding the fields generated by the ejection»andw-
deceleration proceéses, can all be_evaluated in closed
form, Tﬁe movins electrons are treated relativistically,
When the‘contrlbutions are added together, the'resulting
magnitude for E, at an observation point outside *the

source'fegion 1s found to be exactly zero at all times,
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Observation
Point

—

— ocgative
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‘\\\\\\\ Ions
/ Pcsitive \ - |
: / Ions\ \‘ .
L > x

\
Moving
Electrons .

. Figure 3. The shell model at a late stage. All of the

positive ions on the inner shell have been exposed, and

most of the electrons have reached the outer shell and

stopped there to form negative lons, Because of the

retardation, a few of the moving electrons on the far

side of the source remaln visible at the observation :
point, 4 | : §
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If spherical symuetry 1s relinquished, then there
18 no longer this exact cancellation of the different
contributions to the radial elestric fleld, Er’ at an
obsarvation point outside the shell-model source

distribution, Also, there is no longer the limitation
_of the generated electfomagnetlé field components to the
single component Er' .In particular, if 8 weight function
1s introduced, welghting the currents by the factor
cosine O whére © 1is the polar angle measured do'm

from the positive z-axle (ascumed to be verficully

upwvard), then the result 1s a source model whicia will

be called the shell model with cosine asymmetry.

A closely related model is the opposed-hemisphere j
shell model, For this model, the source currents can be
oonsidered to be the upper half of the shell model with
spherioai symmetry, together with the image currenté
which would accompeny sﬁch e hemlispnerical shell source
if it were located direotly above a perfectly conducting.
ground plane, Figure 4 shows the distribution of
positive and negative ions in the opposed-hemisphere
shell model, after the electrons ejected from the inner
shell (and their positively-charged images) have been
deposited on the outer spherical shell,
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- X

Figur~ &, The opposed-hemisphere shell model, after the

-ejected electrons (and their positively-charged images)

have traveled from the ejection points on the inner
sphericnl shell to the deposition points on the outer
spherical shell,




Page 20

When the opposed;hemisphere welght function is
expressed as a Superposition of spherical-harmonic
modes, involving weight factors which aré Legendre
polynomials P _(cos 8), ti:.'én the leading term has.the
welght function for the sheli model with cosine
asymfnetry. This weight function is Pl(cos ©), which
is Just-equal to tée cosine of ©, For the shell
model with cosine asyumetry, PFigure 5 shows the
ion distribution after the moving electrons have comé

to rest on ths outer apherical surface,

When the shell model with cosinz asymmétry is
examined in detail, it is found that the-time histoxy
of the fields at an observation polut outside tﬁe outer
~8ghell can Se interpreted with the aid of Figures 1-3,
However, the weight function, cosinc ©, enters as a
facfor ﬁultiplylng the distribﬁtidns of positive ions,
moving electrons, and negative ions.- The symnetry about =~
 the z-axis remains in this model, but the loss of
spherical symmetry means that the.e are three nonvanishing
field componénts: Er’ Ee, and H,. The other three fleld
components, gp, H&, and He, venish as.a'consequence of
the symmetry about the z-axls and the restriction of

the electrons (and their images) to radial motlon orly.
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Figure 15, The shell mbdél'wlth cosine asymmetry, after the
eJected electrons (and their positively-charged images)
have traveled from the ejectlion points on the 1lnner spherical } !
shell to the deposition polnts on the outer spherical shell, { i
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As in the case of spherical symmetry, the field
ocontributions of the ions and electrqns, at én outslde

observation point; can be evaluated in closed form, The

" result for the sase of E.. has been given expliclily

in Referénce 3. Wnhen the contributions were added
together, 1t was found that for an observation point
ahove the source (on the positive z-axis at a position
above the outer shell), the radiasl electric field rapidly
apnrcuched a neggtive peak, then more slowly deceyed back
to a residual value assoclated with the static dipole
moment of the charge distridbution in Figure 5. The
polarity of E. was at all times negative, in a direction
to drive secondary electrons upward if there haﬁ.been
eny secondary electrons present, in the reglon above

the shell-nodel source éistribution,

'Fbr ean otservation point located alonyg the z-axls,. .

the field components E9 and Hp venish by symmetry.

'However,,for an".obsérvatlion point located in the

neishborhooa_of the_ground plane, to one side of the source,
Eg and Ep have their maximum values while E, vanishes,
For an intermediate location, as Jn Figures 1-3, =ll

three components are nonvanlshing at the observation point,

R TRy
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While the electrio.field éomponents, Er and Eg,
are found to have residual magnitudes associated with the
dipole moment of the final ion distribution (Figure 5),
the magnetic field compongﬁt, ﬁp, is found to be directly
assoclated with the moving electrons that are indicated
- in Figures 1-3 (as modified by the cosine'weight functionj.
The magnetlc fielid is zero at the observation point
up until the moment when the first of the moving electrons
becoues 'visiple' at this obscyvation poin?, and is 2zero
egaln forvtimes later than the moment at which the farthest
moving electron cones vo rest on the outer shell, as sensed
at the observation point with retardafion sppropriately

incorporated, These moments marking the beginning and
defined as

ending of the magnetic-field waveform are/the 1nitial moment,

"8lightly preceding the moment deplcted in Flgure 1. and
the final moment, Jjust after the moment deplcted in
Figure 3,

Fbr.times which lie between the initial and final
monents, the magnetic field at the observation pqint can
be described as the sum of two térms. Qne of these terms, .
the inductlon term, falls off with radial distance in

proportion to r'z. The other term, the radiation tern,

falls off with radial distance in proportion to r'l.
Each tera vanishes separately for times which lie outside
the interval between the initial and final moments, defined

above,

oo T EEE

co sl .

O i




T

~ of the appropriate vector spherical harmonics
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4, RETARDATION AND CAUSALITY

The shell-model calculations described in the

previous Section treated the moving electrons as

relativistic particles, and utilized the Lifnard-Wischert R

m

field expresslons, The same waveform expressions

can be obtained from a distributed-source~curient
ploture, replacing the moving-chargéd-partiols plcture,
provided that the currenrt distribufion is incerted into
an integral forﬁulation of the fielo.s6 in whiena

retardation is accurately incorpoiated,

When this integral method is used, the shell-model
current distribution,. when redubed from four-dimensional .

space-time to the twc-dimensional (r,t)-plane, has the

form of an elongated delta-function, as illustrated in .. = _ __

Figure 6. For this reduction, the anguiar dependence
of the fields and the current has been expressed 1@ terms
6, and only
the dernendence upon radial distance, r, and time, f,

remains in the reduced: problem.
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Figure 6., The problem domain, in the (r,t)-plane, for the
shell model with cosine asymmetry, The source current is

an elongated, tilted delta-fuunction, showm here as an elongated
oval, The region in which the magnetic field differs from .
zero 1s bounded by the two dashed 1ines, and by portions of

the lines r=0 and r= ct,
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The cholce of the origin of time, in Figure 6, has
been made in such a way that the ejectlion of the electrons
from the inner shell could have been through Compton

processes involving gomma rays which left the point

r=0 at the time t =0, Thus the ejections take place

e+ 4 point in the diagram which lies on the line r=ct,
and the current flow extends to the right of this line,
The slope of ths elongated deita-fuﬂction is equal to

the ratio_ v/c. where v i3 the veloolty of the moving
ele. ro in the shell-model picture, and ¢ 1s of course

the velocity of light.

Figy 6 shows the region where the magﬁetic field,
Eﬂ’ differs from zero. For an obsexvation point at a
particular radial distance, r, outé;de the source regilon,
a horizontal section of Figure 6 shows that the magnetic
field will differ from zero for a finife time interval,

This 13 the interval during which moving electrons are

Yvisible' at that observation point,

In the integral methods the field components at
& space-tine po%nt P are expressed as explicit integrals

over the causally accessibleAsource-current distribution,

Through separation into vector-sphericatharmonic‘modes,
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the problem is reduced to two dimenslons, and the
field conmponents for a particular mode are eipressed
as integrals in the (r,t)-plane, over the current

congonents for the same mode,

The realm of this integration in the (;,t)-plane
is showin in Figure 7. It is assumed thét ne source
currents flow in the reglon to the left of the diagcnﬁl
line 1r=ct, because it 1is the EMP.preb;em tnat As
to be treated, and the uuclear detonation initistes the
source-current flow, The currents which contribute to
the field components at a space-time point P ere then
the currents in the shaded reglons in Figure 7. The
horizontal shading indicates the currents which can
make inductlive and redlative contributions to the field
components at P, (Thus the magnetic field componénts
at P must be geneiated by currents in the region that
is horizontally shaded,) In addition, there are
.electrostatic contributions by the currents in the.fectangular
region with horizontal shading, and also by the cﬁrrents

in the triangular reglon with vertical shading. -t

It is the limitation imposed by the causality dlagram
‘ the
of Figure 7, which accounts for/limited reglon of nonzero
magnetic field showm in Figure 6, from the point of view

of the integral méthod.
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Figure 7., The causallity diagrem for the integral method,
The field components at the space-time point P are determined
by the currents in the shaded region, The 1nducti#e and.
radlative contributions are made by the currents in the
rectangular region showm with horizontal shading, The
triangular region with vertical sitzding producesionly .+
electrostatic-field contributlons, ‘
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5. . SECONDARY ELECTRONS

The treatment of the seocondary electrons conprises
the third of the three aspects of the EMP problem that
were referred to in the Intro@uction. Some of the secondary
eiectruns are those that are released by the ionlzing
collisions fhat serve to slow the Compton electrons

in their passage through the alr, Other secondary

~electrons are released from 2ir molecules throush tiie

photoclectolic lonizatlion processes in which the energy
for ionization is provided by X-rays, ultraviolet light,
and visible light from the nuclear detonation, The
sébohdary electrons releéséd by ionizations along the
Compton tracks wlll be malnly confined to the inrner
reglons where there are many Comﬁton-electron-producing
gamma, rays. The X-ray ionization wiil elso have a
relatively short range. Howevér, the lonization which

is produced by ultraviolet light will be spread over a

“large volume, because of the relatively long range of

ultraviolet photons in alr, as compared with X-rays and

gemma rays,
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The secondary elections, once released by whatever
lonizing process, wlll move in response to fhe local
eledtric ficld strength., Thelr motion, in turn, will
constitute a current which will generate its own electric
and mégnetio fields. Since all of the processes aré
transient, and since there are propagation delays
involved each tims a moving electron affists snother
electron, it is possible in principle to set up a
muthematical iterative nrocedure, beginning at very
early times when the secondary ionizatlion is small,

For the initial steps of the lteratlon procedure,

what mattcrs 1s that the product of the conductlivity
assoclated with the'secondary ionization, and thé electric
fileld associated with the priﬁary Compton current,

should give a secondary current which is small ia

‘oomparison with the primary Compton current, The 1teration?

then proceeds by steps ian the (r,t)-plane which are
small enough so that numerical instabilities are

avoicded and a smooth; gradual function for the net

‘ourrent (the sum of the Compton current and the secondary

current). is obtained,
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It 1s also possible to ¢alliupon analytical methods
for the solution of the integral equation, which glves
the motlon of the secondary electrons and the fields
i they generate.7 'In reglons of spnace-time where the
secondary conductivity is not very great, an anulyticel
iteration procedure c¢an be used, where the secondary
current is written as a sum of terms, The first term
is the product of the conductivity function and the
eleoiric field generated by the Compion electfgﬁr'alone.
The -second term is the product of the conductivity functlon
and the electric fleld generated by the first term alone,
and so forth, . This approach should be useful for early

times and for large radial distances,

In regions of §paoe-time where the secondary cpnduétivlty
is very high, the adbove iteration procedure can lead to
numerical oscillation or divergence, Here the straightforward
numerical approach can be uséd, but an alternative is ons2
in which the net current or the net local glectric field
is expanded in a finite set of linearly independent functions
which span the region of interest in the (r,t)-plane,

The integral equation can then be.made to yleld a
_ least-squares condition on the coefficlents in the above

expansion,
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. 6. CONCLIUSZONS

Speclial emphasls has been laid on the causality
requirement, in the cnlution of the EiP problem, The
reason for this empinasis 1s that the source volume is

the time
large euougn to make/rstardation/across this volume
a significant part of the generated electromagnetic
slgnal waveform.duration, A solution to Maxwell's

equaiions which does not ailow properly for this

fetardation ray have little or no relationshir tu

‘the physical rrocesses which take place in the vicinity

of a nuclear detonation,

.it was noted, for example, that the shell-model
calculation showed an early-time radlal electric fleld
which had the polarity to drive secondary electrons
upward abové the detonation center, and that this
early-time radial fleld coincided in time with the
long-range ionization by ultraviolet light from the
Qetonation. and was therefore important in the analysis
of the mechanisms contributing to the establishment of
the large dipole moment which remains after the EHIP

wavefcrm is over,
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There 18 a non-causal nuncerical solution of

‘Mexvell's equatlons which has been epplied to thls

EMP problem.7 As evidencs that this non--causal solution
doss 1ndeed giﬁa'wrons answers, 1t has besen noteda ?hat
the early-time radlal electric field, obtzined fron
this_non-cous?l solution, has the wrong polarity. Instezd
of driving secondery electrons upward above the detonation
center, the earliy~tine radial electric field from the
non-causal calculation drives secondéry electrons dovmward,
Thus en invortantv physical process contrivuting to the
dipole-nozent establlsnnent does not appzar in this
non-causal solutlion,

It is forvtunate that the non-causal iterati&n m3taond
can be separated from ths remalunder of thié nwacsrieal
solution of Maxwell's equations, and can be replaced by
a causal iteration procesdure,; withoutb changiﬁg tha poxtions
of the program which deal with electron attachnent and

air'chemistry, end v’'th the gamma rays erd the primary

source current,

i o st e
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1 ~ ABSTRACT

- In anaiogy with the famillar addition formula for
Legendre polynonials, a gerferalized addition theorem is
proved, A general spherical harmonlie, depending on the two
a.ngles. Gl and ,01 s 1s expressed as an exparision "1nvol.ving
spherical-harmonic t‘unqtions 61‘ (e,0) and of-(e',0'). The
8lx angles are related to each other throﬁgh the equatlons
ocs-'el = cos® cos'e' - 8in 6 sin ©! cos (,6'-,0 cos @), |
sin al»co-s(,?)l-p) = sin© cos 8' + cos © sin €' cos(p'~P cos 8) ,
51n 6, sin(p,-P) = sin ' sin(p'-Pcos®) , The expansion

1s then used in the proof of an integral ‘theorem for

spherical harmonics,
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1. INTRODUCTION

The farlliar addition formula for Legendre polynomials1

can be wriltten as

Pn(cos e') | -_- Pn(cos 91') ?n(cos 0):
MA=n
+, 2 —E—;-l-‘*—::—%-:- Pg(cos ei) _Pﬁ(cos 6)' cosg(ﬁi-ﬁ) ,

A=l : i
- where S I B T

cos ' = cos® cos® + 8iné,siné cos(f-4) .

The angle ©' can te interpreted as the included angle
between the two vectors Iy and r, whose dirsctlons

are épegified by (el,ﬁi) and (©,4), respectively.

The ILegendre polynbmials are a subset of the
more general spherical harmonics. Eq. (1l.1) 1s a
:elationship between members of such a subset, on the
1eft;hand side, and-members of two full.éets, on the
right-hand side.. It is to be expscted that other
nimilar4reiationships exist, in which a full set of

- spherlcal harmonlcs, involving €' and a éuiﬁably’

(1.1)

(1.2).

sy oo
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two :
defined @', 1s related to the/full sets of spherical

harmonics involving (el,¢1)~and (e,8).

It 1s first necessary to find a sultable derinitiop
for the angle @' which is to accompany 6'. A simple

definitlion 1s féund, and the reason for its selection

1s bxpl#ined. An equation of the form (1.1) 1s then given,

in which Pn(cos 91) 1s expressed as a surmation over spherical

Jharmonics which are functions of 0,d,6',d'. Finally, this

equation 1s generalized so that a seneral spherical harmonic,

- wrltten as a functlon of €,,8;, 1s then glven as a summation

‘over spherical-harmonic functions involving €,9,e',4'.

il
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2. DEFINITION OF @'

The vectors r and Ty» with polar-codrdinate
components (r,®,%) and (rl,el,ﬁl), are 1llustrated - {
in Flgure 1. These vectors are shown with respect to

& rectangular coordinate system, with axes labeled

by E’ I’ and g_o

Figure 2 shows a new set of coordinate axes,
labeled x!, Z" end z', which are obtalned fronm tﬁe"first
 set by two rotations, The first 1s.a rotation ébout the
z-axis by the angle P; thls rotation moves the y-direction into
- the position of the y'-axls, which thus must lie in the | | §
(x,y)-plane. The second rotation is abtout the .= * y'-axis,
and moves the z-direction'down by the angle €, until 1t lies
in the position of the z!'-axis, which lies along the vector r,
In this ﬁay, by the two rotations théough the angles ® and 9,
the (x,y,z)-directions are moved into the positions shown o |

as the (x',y',z')-axes.

Pigure 2 thus defines the z'-axis unequlvocally, since 1
this axls must lle along the di?ection of the vector r., The |
y'éazls;wiil also be defined uq;quely,‘if © 1s greater than
zero and less than tr._-The plane thrsugh ﬁha origin of

APIO
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Figure 1, The vectors r and gi » shown in relation

to the (x,y,z)-axes.

S




Page 41

e e TR R, SRR B R B8

The relationship between the (x!,y?,z!)-axes

and the (x,7,z)-axes,

Flgure 2,




Page 942

coordinates which is parpendicular to r will then intersect
the'(x,y)-plane in a stralght line which contalns the
y'-axis. .The direction of this axis can thennbe obtained,

as shown in Fig. 2, through the application of the right-hand

rule. If a, 1s a unit vector in the directlon of the z-axis,

z
while r/r 1s a unit vector in the direction of the 3z'-axis,

then the unit vector in the y'-direction is

8,< '
- S = —z——i“' . 4 . (2.1)

~y‘ r 8in @

If the vector r happens to te parallel to the z-axis,
/80 that sin©® is equal to zero and the vector produdt
a,<r is also equal to zero, then the direction of the
'y'-axls becomes indeterminate. Since any value of g can
be usedhin specifying the directlon of p, when & 1s equal
to. zero or to m, it 1s apparent from Flg. 2 that ths
y'-axls can be directed in any dlrection within the (x,y)-plane,

It 1s esséntial that provision be made for this
indetermlnécy in the orientation ¢ the y'-axls (and the - ..
¢orresponding indeterminacy in the orlentatlion of the

x'-axis) when the angle>¢' is defined, to accompany the

angle ©°'.
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What is desired is. that the definition of @' should
permit"the specificatlion of the direction of the vector Ty
in terms of the direction of the vector r and the direction
engles  ©' and @'. 1In the ordinary situation, in which -

r 18 not parallel or antiparallel to the z=-direction,

-~

the y'-axls 1s uniquely defined and no probdblem arlses.

However, when r 1lles 1n the positive or negative z-direction,

the angle @ 1is not well definad and 4% bscomes difficult to
glve the azimuth angle g, for the vector Iy, in terms of the
" 1ll-defined azimuth angle g of the vector r.

The solutlon of this'problem of ezlmuth indeterminacy
18 shown in Fig. 3. With respect to the (x',y',z")-axes,
the d;rection of the vector I is specified by the polar’
angle‘ @' and by an azimuth angle which is given by the
éxpression (8! -Bcos ©). When r 1s not parallel (o;:
antiparallel) to the z-éxis-, then the use of (g'-g@cos$)
instead of ¢! represéﬁts a simple displacement.of:the -
Aazimuth;angle coardinate. However, in the excgptional
cages, where r 1s parallel  or antiparallel’ t6 the .
z-axis, the - ::.:.choice . of (g'-Pcos®) provides an
‘unegﬁivbcal specification of the azimuth angie #,, even

when g Aitself, and @' accordingly, are both indeterminate.

]
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Pigurc 3., The relatlonship between the vector r; and

the (x',y',z%)-axes.
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3. UNIT VECTORS -

In terms of the rectangular set of unit vectors,
}_; ...1', 5, directed . along the (x,y,'z)-axés, there are .
three polar-cocrdlnate unit vectors associated with the

vector r ; these are:

1 aln@cos f + Jesin © singd + kcos &,

& = -
8g = 1cosdcosd + 'lcoso sin g - ksin 9, (3.1)
a4 = - _1331n¢ + Jcos d.

A sinilar set of unlt vectors 1is associated- ﬁlth the
vectqr Ly
3;.!.1- = 2 sin el cospl + .:! sin 61 sln‘pl + k cos 91 ’

-

1 cos @, cos P + Joos 6, sin P, - ksin,, (3.2)

.y ,.J .
®

]

WY

ﬁp = -éslnpl + Joos @, .

The primed axes in Fig., 2 have been chosen to lie '1n the
directions of the unit vectors '(3.]..), so that the primed

unit vectors, 3." R },' ’ E' s are given by

' eags ey K ma. R




81n @' sin(p'-Pcos 8) = sin @ sin(p,-9) . : (3.6¢)
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The unit vector which 1s parallel to the vector 1,

‘saii be written as 8,psin the form given in (3.2), but it

cau 13 be expressed in terms of the primed axes::

&y - ‘i;' sin ©' cos(P' -Pcos 6) + 3! sin o' sin(Q* - @ cos ©)
. + E' cos ©' I (304)

Fauations (3.1-4) yleld the trigonometric transformations.
608 &, = cos©cos8’- sin@sin®’ cos (9'-@cos 9) , (3.5a)
sin al cos (,el-p) = sin® cos &' + cos ©s5ind! cos(P' -Pcos &), (3.5b)

sin 91 sin(pl-ﬁ) = s8in &' sin(p' -Pcos 8) , . _ (3.5¢0) s

and the inverse transformations

cos @' = cos9, Cos & + 5in6 sin © cos(@; -p) (3.62) |

sin ©' cos(pf—ﬂ cos 0) = - cos'el sin® + sin 61 cos © cos(pl-p) s (3.60)

e i Sl
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- ', ADDITION THEOREM i SR | |

The addition formula (1,1) is based on (3.6a2), but : : 3
a similar formula can readily be written down, based on |

(3.58’3 ) : )

P (cos®;) = B,(cosd) B(cose')

K=

ez B s ) eosen) () con[wipt-poone]. ) 1

It is this formula which willl be generalized into an
addition theoren applicable to any spherical harmonic, }&T (el,ﬂl) ’

not just to the Legendre polynomisl P (cos ®,) . _ : ,!
In the notatlion of Morse and Feshbac‘aa, a general -
spherical harmonic ¢an<be’ defined by | 1
X' (0,2,) = exp(imd,} Pgnl(cos °i’ , (4.2) | | ‘
where | |
P'll:l(cos ) = (sin Gi)m’d(cog':'ﬂ'm Ph(cos 8;) . A(.l&.BA) | o .g

It will be assumed that &, @, €', 2' are independent

- varlables, while 6, and p; aTe the dependent functions

. | . o |
Sivgn by (3.5). Twe operators, Dg o gnd D, 2 , will
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be defined by

hd -1 3 g 9 - 1 =]
D —_— e = s el I L b
.p - [sino a0 cos & P * 81n?@ cos © ap] )
In terms of these operators, the spherical harmonic (&.2)
can be written as -
. ) . m -
xM(6,,2) = exp(ing) sin™e (Dg,p) Fplcos;)s - (4.5)

in which the operator expression (De’p)m haé the meaning
(D+ )'m' when m is positive, (D, )'m] when m 1s negative,
0.2) n 0., |
The proof of (k.,5) is based on the easily verified results,
exp(12;) sin & |

+
Dg,p co3& = (%.82)
0, °°* exp(10) sin o '
(o} )zoose = 0 ' ' SN ( N 1)
0,92 1 - ’ . . o *
“and the complex conjugate equations 1nvolv1;1é D‘é’ X
It 1s apparent also that A
X7(e,p) = em(inp) sia™o (pg )" P (cose). (k.7

‘When Pn(cos el) 6n the right-hand side of (".5)
18 rerlaced by the series eipressi,on (4.1}, the-resu_lt
1s the generallzed addition theoren: :

e e . Kot
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M=n
(n-p)!

(n+p) ¢

XB(op. ) = XP(0,p) Bylcose') 4 2 ()" Bftoos 01

M=l
» exp(im?) sinlle (De,p)m{Pr}:(cos ) cos{}l(p'-pcos Oil} . (4.8) L

Equation (4,8), together with the transformation equations {3.5),
constitutes the desired generaliz'ation‘ot‘ (1.1) and (1.2).

The use of the azinuth-angle expressions (pl-p) and

(p'-Pcos ) is a neé_essary complication, without which the
important equation (4.5) could not be established, However,
once a choice of (n,m) has been made, end the\operatlons

in (4.8) carried out, the angle (P'-0 cos €) can be repiaced

by a re-defined @', here ar}d.in Flg. 3, if this is desired

in a particular application of the formula, The replacement
cannot be introduced until at‘tgz_‘ the operations (De"o)m have

been completed,

PP B S A DU~ P T




Shsh,

R WY,

Page 50

5. INTEGRAL THEOREM

The addition tneorem (4.8) leads directly to an
iptegfal theoreh. B, (4.8) expresses the spherical
harmonic g:(el,gﬁ) as a function of four 1ndependent
varlables, 6,9,0',2', The dependence ugon 2' is
particularly simple, as can be seen when (4.8) is

written in the form

M=

X2(e),0,) = X2(e,0) B, (cos o) +Z[A° cos(42') + Az sin(up)] .

. Jree
' (501)

where the coefficients A, and A,  depend upon the variables

€,0,8' and the parameters n, m, u, but not upen p°,

-~ Bquation (5.1) can now be integrated with respect to p',
with the other three variables held constant, Each term in

" the summation over M integrates to zero, leaving only:

P'= 2qr . _
Xa(01:2) 49" = 2qr X7'(8,0) P, (cos e'), (5.2)
p'=0 |

Other related integral theorems are given in a Separate

-art1c1e3.
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ABSTRACT

With the 2id of a generalized addition theorem
for spherical harmonics, previously obtained, six
integral theorems for vector spherical harmonics are proved,
A source-point direction, (el’ﬂi)’ is first expressed in
terns of a fileld-point direction, (G,p), and & polar-coordinate
.anglerair,'(e',p'), which has as its polar axis the
fiéld-point dircction, Fbr;a particular cholice-of g'andﬁg, all the
components of the woctér spherical hafg;nics for the source,
expressed in terms of (el,pi), are integrated over the
relat;ve‘azimuth angle, P!y while the lfield-point directlon,
(6,¢), ahd the relative polar angle, €', arée held fixed.: The ‘
result in each case is a spherical harmonic or vector spherical |
harmonio of the field-point direction, with the same n and m-
butnnow depending on (6,9) instead of (el,pl), multiplied
by an.exﬁlicit function of the relative polar angzle, o',
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e NG . o,




WA gt e e

C Page 54

% ) 1. INTRODUCTION

1, e generealized addition

In thz preceding erticle
theorem for spherlical harmonics was established. This
additién theoren led dlrectly to the proof of an integral
theorem fof spherlcal harmonics. In the integration,

& vector Ty is swung about a fixed vector T, with a
constant angle ©' separating the two vectors. A sultably
defined azimuth angle, @', locates the aiimuth of r; 1in
its motion about r. This integration, over a full clrcuit,

gave the result:

g'=2n ,
f x:l(e.l a¢1') dﬁ'. = 2n X:(e,ﬁ) Pn(cos ‘9') , (1.1)
g'=0 . | .

'Y
o

where x§ 1s a general spherlcal harmonic, and Pn-‘;,

is a legendre polynomlal,

In this article the result (1l.l) will be generalized
to apply to problems which arise in the use and applicatlon
of vector spherilcal harmonics, vector functions which are
closely related to the scaler sphsricai'harmonics xﬁ.
Because there are fhree independent vector spherical
harmonics for each.choice of (n,m),‘an& each of these has

three vector components, the generalization of (1.1) leads




Page 55

to nine independent scalar equations, Howeve:. these
nine scalar equatlons group naturally into three
radial-component equations,. each of scalar fornm,

and three transversec-component equations, each of which
combines two scalar equations into a vector equation with

only two independent conmponents rather than three,

‘There are thus only slx separate integral theorems
to be considered, rather than nine., This article gives

the proof of each of these six integral theorens,

g
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2. VECTOR SPHERICAL HARMONICS

The notation for the vector spherical harmonics,
to be used in this article; follows that used by lorse

and Feshbachz. The scalar spherical harmonics are deflined by

x,’f(e.m = exp(inp) P!'lml(cos 0), (2.1)
where
P'm’(cos 0) = (sine)lm' -—--Ei-——-—- P, (c:s o) . (2.2)
n &(cos ) L

The vector spherical harmonics separate into three sets:

8, X, (0,9, . | (2.3)

B (e,0) =
o Valn 1) (n-lmr+1) i (n+1ml> ]
B8P = GavD) ste { 1 %01
inm (2n+1)
| 2 nna) An} (2.5)
(o ) = Yn(n+) , 1m (2n+1)
~n 00T (on4) sin n{n+l)
(n-lm! +1) (n+lml)
- gp[ (!‘H‘l) xn+1 - }%_1] . (2-5)

In (2.4) end (2.5) the arguments of the scalar harmonics are

(6,9) in each base. Explicit forms for the imit vectors & 3

8¢ and 3’,0 are given in Eq& (3.1) of Reference 1,

i Bt
RN

Lroyza

L »s
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2. VECTOR SPHERICAL HARMONICS

The notation for the vector spherical harmonics,
to be used in this article; follows that used by Horse

and Feshbach®. The scalar spherical harmonics are defilned by

X2(0,8) = exp(1np) B®l(cos o), (2.1)
where
P'ml(cos e) = (sine)'m' —-—---El-l—-—-- P, (c:s o). (2.2)
n d(cos e)'ml

The vector spherical harmonles separate Into three sets:

Bl(0,9) = &, X1(e,p), . (2.3)
my, ¥n(n +1) (n-:mrm (n+xm|> ]
Zn (e.,p) (2n+1) sine { T (nA) 1 B xn"l
in (2n+1)
Y2 Rma) } (2.5)
cgl(e’p) ¥n(n+) { im (2n+1)
~ (2n+1) sin © n(n+l)

(n-jml+1) (n+mn|)
'P:p[ oAy am . Ta ’Stf-l] + (2.5

(6,92) in each 6ase. Explicit forms for the ﬁnit vectors gr ,

2gs and g.p are given :ln-Eq& (3.1) of Reference 1,

> R i i e,




 Eas. (3.5) of Ref. 1,
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3. THEOREIl I

Tne ‘-83x : Integral theorems involve integrations
over P' of components of the vect . spherical harmonics
which are expressed as functions of (ei,pl). For exanple,

the vector spharical harmonic‘gg(el,pl) has the form

'Ef‘el’pl) = 21r Ef(elsﬂl” (3.1)

obtained from (2,3), where tie unit vector 83p » 80d the
orthogonal unit vectors 20 and glp » have bgen glven
explicitly in Egs, (3.2) of Reference 1, The geonetrical
configuration of the vectors r and xr; 1s shown in

Figs., 1~3 of Ref, 1, while the trigonometrio transformatlions

ere given in Eqs, (3,5) and (3.6) of Ref, 1,

In the 1ntegration over p', the vector r 1is held
fiied, wnlle the vesctor gl.is'swung.in an arc with the . . .
angle €' held constant, The path of integration 1s showm
here in Fig, 1, Of the four 1ndepéndent angu}ar’variables,
e,p,e',p'; only P' varles, but both of the éﬁgles él
and pi will vary during the integration, These latter

are treated as dépendent variables, through the use of

The direction of the vector function (3.1) changes

during the integration over Pl since 8, 1s a fuanction of 2',

e IR L P
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Figure 1,
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4
* A. | Path of
© . ry during
integration
over P!

/

The relationship between the source-point vector Iy
end the field-point vector T -Durlns the integration
over P' the vector Ty is swung about r with the

relative polar anzle ©' held constant,
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. The vecfor function (3.1) will therefore be resolved into
1ts components before the 1ntegfation, end the simplest
component to be consldered 1s the component which lles

in the z'-dlrectlon, the directlion of the unit vector a..

Acpordingly. the projection of (3.,1) onto -

8, PU(0,,2) = cos0' X(e,p) , (3.2

will be intcgrated over p',

Wnen the genéralized additlon theorem,
‘ JE B ' ' _
. x;‘(el ,pl) = xr’f(e,p) Pn(cos e') + Z[Ac cos(pup') + Assin(}:,@')] :

M=l
| (3.3)

which was glven as Eq. (5.1) of Ref, 1, is substituted in the
rigat-hand side of (3.2), and the resulting expression
integrated term by term over the angle 2', with 6,0,0"

held constant, each term in the summation 6ver M integrates
| to zero (since A, and A do not depend upon p'), and the

result 1s the first of the . six Intezral theoreas:
pr=2r

' §r°§§(el,,01) ag! = | 2qrx;‘(e!p) Qoé o' Pn(cos e') . (1)
. piao 2 . :

i ol
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L, THEOREMS II AND III

integral ;
Two more/tqzorems are obtained mhen the addition . 4

theorem (3.3) is differentiated with respect to &' and

with respect to @', It can first be verified, from
(3.1), (3.2), and (3.5) of Ref, 1, that:

g%‘ = - ;{%{5‘? (2x°816) > T ay
‘:%' "~ sin e-l'zme- (g".elﬂ) o » - A
g;% = (ér'flp’i’ . ' ‘4‘2a)

From the properties of the spherical harmonics (2.1) it -

can also be verified that

I __n(nd) (n-lalal) o .
0%, ~’{11(91f91) = (2n+1)sinel[ (i) X4 (88)

(n-ﬂmn &_l(e !pl)] ()"033)

o .
s'z’; %T(el’pl, = 1m§?(elipl) . : . - (1&.3b)
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From (¥,1-3) and from the definitions of B and Cp 1n (2,4-5)

it can be seen that

A/n(h+)

3
. gev X (00,9) = - Teiner  or +37(6,,0,) (4.4)
3,0' xa( 1’5”1 2 o A\/.n(n+1) 31".9::(61’91) R (14‘5)

Differentiation of (3.3) with respect to 6' now gives

—

. lg: -_....‘:._........ | "2 t ._-...._.d-'_-...— A L
8. 33’3(91.,,01) my{)ﬁ(e,m sin“e (005 67 )Pn(cose )

JLES - Bt

...1 61 BA ( 'y o+ 945 tn(apt) \\ -

- 8 -.._.. cos(u —_— 8 ’

" co! osih 9! e j
#= | (426)

while differentiation with respeot to p' gives

51.'9?,:(61,,01) = -—z-lf(}__;l—-—-a;)- Z [MAO sin(}i,@') - )-l AS cos (}*p' )] . (4.?)

n=1

When the expliclt forms for A, and A_, obtainable from Eq. (4.8)
of Ref. 1, are introduced, then (4.6).and (4,7) become addition
theorens in their own right, for use with the vector spherical

- m
harnonics §E and Sn

e

. oo mandlan e e

e it tinnen Y
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Equations (k,6) and (4,7) can now be integrated
with respect to fN', to give the second and third

integral theorens:

p'a2m .
2
o H(0,) dp' = 7?(':?1‘3' Be,p) stnfer TSt (cos 01)
pr'=0 . . |
(1)
pra 2
ferCatespr ap = 0, - (11
s

ki,
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" 5, RECURSION FORIULAS

The familiar recursion formula Tor spherical harmonicsS,

éosexﬁ(e,ﬁ)) = '(’!(lgz‘i%%“)‘ xgl.,.l(eap) + §2H+1|; Xn_l( 3,0) ’

leads directly to a similér fornula for the vector spherical

harmonics EL(6,9):

-~ (n-jo|41) (n+in)
m
cos ® By (€,2) = “(2a4) n+1(°"°) + (2n41) ..n-l(e’m .

Corresponding recursion formulas can be established for the
vector spherical harmonics Eﬁ(a,p) and gﬁ(e,p), through
(5.1) as applied to (2.4) and (2.5), but there is soue

oeross-coupling of the two symmetries:’

(n-|mf+1) x/réx-(.n+2)

in

_t‘:osegg(e,p)

. (n+z}) ¥/ (n-1) (n+1)
(2n+1l) n

(n-{m|+1) Vn(n+2

cos © Gy (6,

(n+m)) ¥ (n-1) (n+1)
(2n41) n

(5.1)

(5.2)

(zmil) (o) 20 (0P - s Gnlenn)

g,‘,“_lte,m , (5.3)

(za 1) (n4) n+1(°'/°) + n( ﬂ) Bﬁ(e,p)

[l 1(e,p) . (5.4)

I
48

fa il - ek i

> ¥ ¥
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6. THEQREM IV - °

From the cquations in Scction 3 of Reference 1, it can

be shoin thnat

(ge-glr) = sipe' cos{p'-P cos ®) = ;—;—Lr-;é (cos © cos©' - co.s 01) y (6.1)

. l @
[ ] = L '.. F ] e om— e S . °
(ay°2,,) = siné' sin(p'- 2 cos 6) Y aN(c:oq 0,) (6.2)

From (2.3), (5.1), and (6.1) 1t is apparent that

m -1 |{n-|m)+)
2G.£n(el’p1) = slne[

(2n+1)
(n+lap) n
(2n+1) ’51-1(91’91)] . (6.3)

Each of_theAscalar spherical harmonics on the right-hand slde
of (6.3) can be replaced by an expansion of thé form (3.3).

Integration over Q' then glves

Ple=2nw |
<27 ) (n-{z1+1)
8o Faley.8y) dp' = sme{ (o) X (8,0) P, (cos @)
P'=0 -

- [cése )ﬁie,p)] [cos e! Pn(cos 9')]

+ .zgit:z'))_ gﬂ_l(e,p) P, 4 (cos 9')} (6.4)

)g‘fﬂ(el,pl) - cos8cosé x;‘(el,,@l)

PETIPEY PR

|
{
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(6.44) oan be simplified with the aid of (5.1),
end with the use of (4.3a) in tho form it takes with m=0,
The result is the first half of the fourth integral theoren:

P'=é-1r
ge°Enley19) 7'
pt=0

21r (n-jm]+1)
(2n+l) sin e[ (n+l) xn"‘l(e'm

(n+m|) d
- )g?_l(e,,@) sln20' m')f’n(oos er

(1va)

From (2.3), (6.2), and (4.5), the relationship
\\
1 9
PR = e [ e B n]

n{n+) | '
LED  fngian] o

can be established, and the recursion formulss (5.1) and (5.4)
can then be used to replace the bracketed expresslons by
linear combinations of scalar or vecotor harmonios, The .
integration ovexr @' can then be carried out without diffioculty,
by methpds used in earllier theorems, with the result:

Plz2w

2Tinm 2. d
Eﬁ.gg(el'pl)dp' " n(nHl)sin e }gce’m sin®s 'E'("é"é"é"‘)' P, fcos o) g}
pr=0 g
vy |
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Iheorems (IVa) and (IVb) desal with the trcnsverse

components of gﬁ(el,pl). that 15, the couponents that

are perpendicular to the writ vector a A vector ocomblnation

r.
of Just these transverse components 1s equivalent to the
subtraction of the longitudinal component from the : ‘ |

original vector:

Pa(1s0)) = 8p2. B(0,0)) = a5 29 F(0,2) + 8y gp-gﬂ(el,}bl)
(6.6)
When this vector comblnation of (IVa) and (IVb) is made, it

is found to have the grouning of terms that appears in (2.b4).
The result is: '

P2 | | - :
[f’i“’l*pﬂ_ O ACH A KT
p=0

4 P (cose'). (IV)

A 260 &
~ BY(6,8) sine! Tleos o) In

n(n+) ~ 2

"
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The fifth integral theoren decls with the traunsverse

part of the vector spherical harmonic _.P_Bi,‘;(el,pl) . In analogy

with (6.1-2), four scalar products will be needed:

sin € cos® sin@' 98,

2 -
(20°210) = sin @ 8in © 3o
8in©; cos © sind' 8Py
(a 'al )= - g ’
~9 <107 - sin © ae!
( , coSs 91 381
8 . = - s
=p'i1e sin & op'
( ) sin &, cos 8! sin 3, cos€; 3P
a 8 = - — _
~p =1p £in © gin 6

(7 o;‘-a).

(7.1b)
(7.1e)

(7.1Q)

which can.all be derived from the equations in Section 3

of Reference 1;

From (2.4), (4.3), end (7.1) it is found that the

transverse portion of g;(el ,,01) is:

St v et e il oSk

i

“,‘.m“““ = -
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P

A i i e _—

Ze 59‘.?::(61”’15 + 8p 29" Enlep0)

=-—-—

#/n( n+1)

cos©s8in®' g o .
[ sine 5o w2

cos & a
-ﬂ sin & ap! xﬁ(el”@l)}

A/n(n+l) 'a [(n-—lmlﬂ) Xﬁ(el 2y) - (n +]m)) )ﬁel'zq’l)]

(2n+1) sin 6 ~© (n+l)

imcos &' |
vt Y €1 . | 7.2
'\ﬁl(nﬂ) sin & 2p }ﬁ( 12%1) (7.2)

(. In the integration of (7.2) over P', there are five terus
to be consldered, The first two terms can be‘trénsformed
with the aid of (4,4), (4,5), and (5.4), thén intezrated
through Theorems II and III,  The remainlng three terms
may be integrated directly, by Theorem I or its scalar
equivalent, Eq. (5.2) of-Eeferépce 1,  What 1is oﬁtained
from these integrations 1s the fifth integral theorem:

=27

f[}_aﬁ(el,pl) T fr ~r.n(91’f°1)]d,°'
Zo o

| | . 2.,
_ . . sin®e d ol
2ar .I?ﬂ(e,p) l:cose P (cos®') + - atm) (505 0") P, (cos® )] .

(V)

MR i ol Vs Ak LIS ot e ik e o e e Sene i
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8. THEOREN VI
Four additional partial derivatives, analogous to
those given in (4.,1) and (4#.2), can be obtainzd from
Eqs. (3.5) of Reference 1: |
i
e e 0 sin®' cos(p" e)
—_— = ® cos + ¢o0sO sino' cos(P'-P cos z
50 in g sin ® cos o A p'-» |
- P sin20 sin & sin(@'- @ cos e)] ’ (8.Xa) | 7 *
86, | k E ‘ :
% - o e:sz.nt‘: cos @ sin®' sin(2'-Pcosd) , (8.1b) !
. |
82 sin €' '
—_— = - cos © cos ! sin(p'- P cos ©)
e sinze_-l '
+ 5in & sin &' sln(p';p cos @) cos(p'~ P cos ) - ? 1
+ psin ©cos©sin @' _ i
+ psinze cos &' cos(p'- P cos e)] R (8.1c) ) ‘
82, - sine '
—= = > sin® + cos© sine' cos &' cos(P'-P cos )
op since, ~ '

- sin6 sin%e cosz‘(.;b' - ,dcos e)] . (8.14)
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- In terms of these derivatives, (7.1) can be rewritten as

| E sin®, a3 | _
1 1

Nagme) = oo % . (8.22)
| -l 861

(ﬁg'f}lp) = no —55- ’ (8.2p)

(-a-)D'?-’le) = -sinel [?—&- - ptand + p-tano ip—l-:] (8.20)

30 Y
' o8 ' oo : :

o6

In analogy with (7.2), the transverse pbrtion of the
vector spherical harmonic Cp(6;,9) cen be written in

the form:
2o Cn(@sfy) + 25 25007(,0))

1

1 .3
S Y {Eg sin ® 55;"&(61-"01)

j- ﬁp[’a—é' - imptane + P tan © -570]]%(91,}31)}- (803)




. Page 71 !
g‘
‘When )(’:(e ,pl) in (8.3) is replaced by fhe expansion (3.3), |
and the resulting expression integrated over p', the sixth "
of the integral thsorcms i1s obtoined: :
p': 2r :
f [g’:;(el,,ol) - 2, gr-_c_;‘;(el,pl)] ag' = 2m§(e,p) Pn(cos o') .
pt=0 (vi)
|
]
R R LR T - C i s AL e e ok s b - & e ” - ks i o £ m iy " e 'l" '
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‘theorems mix the PO and EP symmetrles, ‘'while keeping the
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9. APPLICATIONS

These six integral theorems are of particular value
when a vector field function is to be obtained from a
vector source runctlon. An exanmple is the retarded
an electrical 4
Hertz vector, as obtained from / source-current distribution,
The theorems show that if a source function, depending on

the angles (el,pl), has that dependence characterized by

a“partiéular cholce of n and m, then the integration over
the azimuth angle P' willl immediately ensure that the fileld
function, in its dependence upon the angles .(6,£), will be'
characterized by the same cholce of n and m, provided that
the Green's function relating field to source doés not itself . z’
depend _upon P', Vhatever dependence the Green's function

may have upon the angle &' (the angle between the veotor I, to

the source point and the vecﬁoi T to..the field point) is here
immaterial, and cannot affect the '@ode separation'.of the

expansion into vector spherical haﬁmonics.

‘It should be noted, however, that certain of the
8lx theorems introduce coupling betwegn'a Eﬁ source function
and a fﬁ field function, or vice versa, That is, the

~n
Sﬁ synmetry separate fronm the other two,

The use of these theorems in electroﬂagnetlsm will be

111ustrated in a followlng articleu.
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ABSTRACT

An ' :: equation giving the retarded Herté veoctor,
TTYE,t), in terms of a source-current distribution, g(gl,tl).
;; derived, Both vector functions are written as expanslons
in vector spherical harmonies, with the expansion coefficlents
containing the dependernice upon radial distance and time,
vhile the angular dependence 1s kept within the harmonlc
functions, After: integration over two angles, expressions
are obtained giving the expansion crefficients for the
Hertz vector, which depcnd upon (r,t), in terms of the
corresponding expanslon coefficlents for the current,
which depend upon (rl,tl). The original four-dimensional
problen 1$ thué reduced to wo dimenéions, but with the
four-dimensional causality requirements satisfied at each

step of the analysils, -

1 L =

R s 15

et Bt o it e e
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1. INTRODUCTION

Although the electromagnatlc radiation from'a general
time-decpendent source-current distribution is usually -
analyzed in the frequency domaln, for certain problens
the tine donain is nore appropriate, An exauple is the
electronagnetio radiation from the electrical ocurreats

generated in the alr by an atrospheric nucioar detonationl.

In this example’the source currents are highiy foenslent,
and retardation across the source reglon plays an lmportant
role., Furthernore, part of the current is in the form
of relativistic electrons, produced by Compton c&llislons
betweon gamma-rays from the detonation and clectrons from
air molecuics. Tne flelds radiated by relativistic

electrons show forward directivity, which is not easily

expressed in the frequeacy domaln but which enters readily

into a time-domain feormalism, % @ La ssel fn Nl j

. -

Lie Tﬁénéﬁ;i§§is’ié ﬁSEtjétraightforward if the medium is

assumed ﬁo be the vacuun, In the examplelmentioned above, there is :
time-dependent conductivity in the source reglon, but

this conductivity is actually formed of electrons and lons

whose motion in the local fields can be represented as an

addition to .the primary source current, Simllarly,

) ——

o bt Aol e et s

b

U VG
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dielectric polarization of the air molecules cen also be

represented mathematliczally as a secondary increment tq
the sourcs-current distribution, Thus if the secondary
currents are &ll treated -explicitly, the vacuum equations
willl be adequate for the caloulation of the flelds

generated by &11 the scuroce currents,

The source-current distribution will be expressed as
en expansion in vector spherlcal harmonics, with each coefficlient
dopendinzg in an erbitrary way upon the radial distance and
tho tine. With the ald of theorems established earliers,
the engular depandence of the source will be integrated
over, 1eév1ns the fleld function for each vector-spherical-
harmonic ﬁode expressed as a function of radial distance

ard tine.

The Hertz-vector formalism will be used, because of
the relative simplicity of the integrations, Iﬁ later
erticles?*t the magnetic ficld .end electric field will be

given explicitly.

R

oy el e
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2. HERTZ VECTOR FORMALIS!

The electromagnetic fields generated by a time-depondent

distrioution of charges and currents could be expressed

in terns of the vector and scalar potentlals, together

with en auxlliary condition which limited the charge and
current densities to those which satisfied the equation

pf continuity, It is more‘convenienf, however, to make

use of the Hertz vector formalism.s The need for an
auxiliary condition is avolded through the use of the
free-charge polarization vector, 2, to represent the

source distribution,® Aswill .be éhown, the integrals

can then be refornulated so that the final equation for

the Hertz vector expresses the source in terms ot the

curreant density, J,; without any expLlicit appearance of

the charge density, p.
The free-charge volarization vecter is defined through

fhe eQuations

g =23, p=:-Lp. ‘ (2.1)

I = 3¢ 2 3

4

For a transient source, therefore,
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 t=t -
P = f J dat , : ' (2.2) -
~ ' .
tmt, :

where to is a tine which pfecedes eny current flow,. | b
(Any pre-existing electrostatic fleld can be represehted

through a constant of integration, go’ added to the

right-hand side of (2.2),) BecauséNof the forn of (2.,1),

the equation of continulty of charge 1s automatlically

satisfied, -

The Hertz vector, 'WTYE,t), is defined by

Tew - g [l by on. a2

in the MKS units used by Stratton, In (2.3), dV; 1s the
folume element at the source point, Ty end 8 1s the

distance from the source point to the field point,”g:

= = |z-n|. - (2.4)

Eq. (2.3) defines the retarded Hertz vector, from which
the retarded electric and magnetic field vectors can be

obtained, through the equations
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E = vvv-W]" - $L~5firrr (2.5)
.2 =2l - o2 8t2~ ’ .
E = Ek,g:xiggr[[ﬂ | (2.6)

These fleld vectors satisfy Maxwell's equations,

An advanced Hertz vector could also be defined,
througn fhe use.of g(fl’t+s/°) instead of‘§(£l,t-s/c)
‘in the integrand of (2.3). Eqs, (2.5-§) would then
glve advanced electromagnetic field vectors, These
would also satisfy Maxwell's equafions. However, there
is no evidence that these advanced flelds play any
role in nracroscoplc electromagnetlism, Accordingly,
only the retarded Hertz vector (2.3) will be considered
furthef.in this article, |
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3. EXPANSION I VECTOR SPHERICAL HARMONIC3

The scalar and vector spherical harmonics have been
defined in Section 2 of Reference 2, The vector functions,
g, g, and iU: will be expanded in terus of the vector
sphz;ical harmonics, gﬁ, gﬁ, and gﬂ. The Hertz vector
is defined at the field point (x,t), and will be written

as the expansion

©w in | | ‘2
T- Y Y Toew en + Toaenr Been
. .

_ n=0 nm=-n ‘
+ r‘l'rén’n(rst) SE(G,P)} ’ (3.1)

Wh1¥9 the free-charge polarization vector is deffhed at the

soyrce point (fl’tl)’ and has the expansion

N

<O

4n | | |
E = Z Z {gz?,n(rl’tl) En(ep,2y) ’_’Eﬁ‘in(rl'tl) 931(9.1’?1)“

n=0 n=-n

+ _lfén,n(rl,tl) .C}ﬁ(el,pl)} . (3.2)

The current density, J, has an expansion of just the form (3.2),
‘but involving the expansion coefficients J;in(rl,tl) ’

m .

S e g

e e 1w W ekl
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From the definitions of the vector spherlcalAharmonlcs‘
(in Ref, 2) it can be seen that'gg and gg are both identically
zero, so that for n=0 oniy the terms involving 28 are
nonvanishing, The definitions also show that the vector
spherical harmonics which differ only in the algebraic
sign of m are complex conjugates, Since the vector
functlohs s B and'II‘are real quantitlies, not complex
quantities (ig this time~-domain analysis), it consequéntly
follows that the expansion coefficlents which differ only

in the sign of m are also complex conjugates, as illustrated by

Pron(ryaty) = [f:?n(rl’tl)] y 3.3

T b i e e S
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4, DEFINITION OF ©' AND P!

It will be convenlent to define a polar coordinate

system wnose polar axis lies along the field-point

- -vector ¥, In terms of this coordinate frame, the

source-point vector Iy has the polar coordinates (rl,e',ﬁ'),

end the sourceroint volume element 1s glven by
- 2 1 t Ao A
4V = r;“sin©' dr, ae' qp', (4.1)

The poler angle ©' is the angle included bebween the

vectors r and Tys SO that
Iex; = rrycoso', | . (ko2)

and the ezliuwuth angle @' will be defined as showm in

Flg., 3 of Reference §, Tne trigonometric fransformation '
whilch exprésses (el,pl) in terms of (e,p) end (o',0')
1éiglven as Eqs, (3.5) of Ref, 6,

.In this coordinate system, the Hertz vector (2.,3) taker

the form

Ty= © e'=T P'r= 277 ‘

1 1 ar

.'I!‘({,t) = F eo :c‘]_2 dry; | gsin &' a¢' g(:gl,t-s/c) apg' . (4.3). \
. ry=0 e'=0 pr=0

11 g @A RSN

e

g ARG e 1
ig et




Page 83

5. INTEGRATION OVER '

In the expréssion for the Hertz vector, Ea., (4.3),
the integratlon over the azimuth angle @' will be
carried out first, The geometrlical configuration 1is
shovm in Fig. 1 of Reference é. The source-point
vector,‘gl, is maintained at the éonstant length, rl,
and 1is syung about the fleld-point vector, r, Awith the

angle ©' between these two vectors held constant,

© The intezration over.p' is a full circult, fronm
P'=0 to p' =24, and in tals integration the distepnce s,
defined in (2.%4), remains constant (since ©' is constant),
us in the integrand of the p'-integration only the
sohrce-point engles (el,pi) will var&. By (3.2) it can
be'seen tha:?sariation 1s therefore confined‘to the

V.. %or spherical harmonics themselves, and that the»

expansion coefficlents will remaln constant,

The theorems of Reference 2 can now be brought into
the enalysis, and utilized in the p'-integration of (4.3).
In ‘this way all nlne components of the thréé vector

spherlcal harmonics. for a given (n,m). oan be integrated

over P', giving explicit functlions of cos8', multiplylhg

vector spherical harmonies of (8,9),

T P |
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6. INTEGRATION OVER !

After the Integration over @' has been done, the

integration over &' takes the general form
e'=TT
F(r,rl,t) = 'f%‘-g(cqse'.)fwlgt-s/c) sin®! 49, (6.1)

©'=0

where f 1s one of the expension coefficients in (3.2)

and g 1s an expliclit function obtained from one of

the six integral theorems in Reference 2,

During the integration (.1), the distances r and rq

are held constant, but the distance s 6han_ges as ©' charges,

' By the law of cosines, the relationship (2.4) can be written

as _
,sz = r2 +r12 - 2rrlcoso', . o L (6e2)

and its differentiation, with r and Xy held‘constant, glves
s ds = rr)cin®'de', S 6.3)

Ea., (6.1) san thus be replaced by

| & =l +1))
1 .
P(r,ry,t) = f | ;;is(g).v.f(rl;t-s/c) ds , (6.k)

s =‘|r-rl|

< iy 10 iillh
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where the quantity ¢ 1s defined by

R L (6.5)

; =" ¢cos O' = (I‘

erl
Tne integration (6.4) can be rawritten also as an

integration over the source-point time variable,_tl, through

¢ = t-s/o, | (6.6)

at

1 %ds . | (6.7)

In this case the quantity f is expfessed as a function

of tl having the fornm gt, where

! 2 2 2 2 |
L, = TN [r +r° -0 (t-tl) ]. (6.8)

The Integration thean has the appearance
tl—t--dr r|‘
&

1 1’1‘1
ty=t-Glrirg)

The function g(g), obtqined from the integral theorems
of Reference 2, 1is in each case & polynomlal in g, and
throush (6.5) it is therefore an even polynomial in s.

For each such function, an assoclated fuaction G(r,rl,s)

can be def;ned by

e i N

SR
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G(r,ry,s) = g(t)ds, (6.10)

8=0
eand this assoclated function is now an odd polynommial in s,

The integration over &', as transforaed by (6.4) into
en integration over s, will be carried out as an integration
by parte, with the aild of (6.10), The result is

1 N Rt
F(z,r ,t) = ;;;-G(riri,s):f(riytag/c) .
s=(r+ry)

1 a - ’ »
;-1:1 G(r,rl,s) ['é-s-' 'f(‘l,t-s/c)] ds . ($.11) -

s§|r~rl|

In each case to be considered, the function f(rl,tl)
represents an expansion coefficient whica has the ..

. tine dependence of = component of the free-charge
polarization vector, P, The time derivative of
sucn a conponent giveg,the_correspondlng component of
the source-éurrent dencsity, J, as shown by (2.1),
Thus the derivative af/d2 in (4.11) éotualiy represents 1
& current component, An example is given by

S _m 1 | | - N
55 Pron(ryat-s/e) = - ¢ Jﬁln(rl,t—s/c) . (6.12)

R

R Y
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Similarly, where < appears in (6.11) undifferentiated,

representing for example the coefficlient Pr n?

written &s a time integral of the coefficlient Jr.n

it cen be

l
__rm (rllt S/O) ‘= f m (rl’t ) dtl ’ (6.13)

where to is to be chosen as a time which precedes any
current flow. (As nentloned in connection with Eq, (2.2),
any pre-existing static field, formed by an earlier
charge dlsplacemznt which is not included in the |
transient current that 1s being analyéed, can be 

represented by a constant of integration, added to

the right-hand side of (6.13).)

T o T S T A - S T T T P
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7. MATRIX REPRESINTATION

After tle integration over p',

and the transforaation

from (6.1) to (6.,4), but before the intesration over s,

the Hertz-vector expansion coefficlents can dbe represented

conpactly throush the matrix equation:

" 1
'-I-rot’n,n(r’t) = 260

1"1--

In (7.1) each of the Greck indices,

the three values: r, B, C.

(rl/r)dr1

s=lrirl'

=0

sunnation over these values,

s=(r+r, )

Sén))\(g) P (I‘l,t-u/O) do .
(7.1)

¢ and A, runs through

A repeated Greek index indlcates
Thus (7.1) represente three

equations, each of which may involve three expansion

-*coefficlents for the free-charge polarization vector P,

However, some of

the

("4

"ot elements of the matrix p(n)(g)

are zero, so that the equations are in fact relatively simple,

The . matrix elements, determined through the use of the

theorems in Reference
sﬁng(zi =

ety =

séné(g) =

2’ aréﬁ

t B (1) ,

t P(2)

P (T)

. (7.2a) »
(1-z2) 4 | : :
i

& E

Py

T sasvagy
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2

| o | |
g’ (1) = gty = .%Tfiﬁfipn(“ : (7.24)
g3(1) = ey = o, - (7.2¢)
e:g’:ctz) = sg”)B(g) = 0, (7.21‘)'

When the Integrals having the fora (4.4) are
integrated by parts, as illustrated in (4.11), then

the Hertz-vector expansion coefficients (7.1) take the

form:
ry=eo o tl-—'t- (r+r1)/c
rITo.n;n(r,t) = -—é—;— (rllr) drl Gé.r:))\(r,rl,r-trl)‘ J)n.l,n(rl’tl) dtl |
r,=0 _ ty=t,
. ry=r o) tl:t-;r~rl)/c
- '5752' (rl/r)drl Gd’h(r,rl,r~rl) Jx,n(rl’tl) at,
r,=0 t1=t°
r = | | ty=t-(r;-r)/ec
- Ziéo (ry/r)dar, Gé?l(r,rl,rl-r) J;in(rl’tl) at,
ry=r £ =t
ry=r t1=;-(r-rl)/c
+ E%?;- (rl/r)dr1 Gé?i(r,rl,ctrctl) inn(rl,tl) dt,
r{=0 t1=t-(r+rl)/c
. r = tyt-(ry-r)/c | : N
+ (rl/:r)dr1 Gé?i(r,rl,ct-ctl) Jf,n(rl,tl) dty . (?.3

N
h

ry=r t1=t-(r+r1)/c
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The matrix eléments Gé?; sre related to the matrlx elements

)

gé?k through an equation of the form (4.10):
s=s ' ‘ . ; 4
Gé?l(r,rl,S) = sé?l(z) ds , (7.%)
0

i)
ne

and can therefore be obtained explicitly with the
aid of (7.2).

I O P P

A AR U L AT, )
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8. SUMHIARY -

Equation (7.3), together with (3.1) and (3.2), glves
the Hertz vector '1Tk£,t) in terms of the source-current
denslilty function Ezzl’tl)' The use of the expansion
in terns of vector spnerical harmonicé, for both the
Hertz vector and the source-current density, has provided
"a mode separation,'in vhich a particular source mode,
characterized by (n,n), leads to a field mode which 1s
also characterized by (n,m). A source curreat with the
synmetry of the vector spherlcal harmonlc QE leads to
e field mode with this same symmetry, but there is

cross—-coupling between source and field modes having

the symmetries of the vector spherical harmonics Eg and BT,

~n
The retarded Hertz véctor, rﬂ?z,t), is expressed

as an integral over the source’cu;;ent, g(fi’tl)’

within the reglon of space-time which is consistent with

causality requirements, Since the original form of the

Eertz vector, given in Eq, (4.3), 1s in accord with |

the fequirements of causality, and since there is no

contanination by 'advancéd' fields, elther in (4.3) or J

in eny later stazes of the analysis, 1t can be concluded that

o A ot i e b e
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the Hertz vectornin the form (7.3), éhough expressed in
the (r,t)-plane where causality-requirements'are not

very ‘transparent, will nevertheless remein fully
consistent with the physical requirement that the
electromagnetic effect of a moving charged particle should

travel .at the velocity of light if the medlun is the.vacuun,

o

"* - Tne explisit caldulation of the electric .and.maghetlc
fields, 'from’ the Hertz vector given here in (7.3) and (3.1),

will ba»oarrled out in two following articles.a’u

z
i
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ABSTRACT

The preceding article gave tne retarded Hertz vector
in terus of a general transieat sourée-burrent distfibupion.
Th: = -Hart~» vector 1s here differentiated to glve the vecter
pyﬁantial and the magnetic fileld vector, All of these
vector quantities have been expanded in vector-Spherlcal
harmonics, and in each case it is the expansion coefficlents,
which are funciions of the radial distance r ard the
time t, whizn are expressed-as twd-diﬁenéiénal integrals,

in the (r,t)-plane, over the source-current expansion

coefficlents her .g the corresponding values of n and my

where these are the mode parameters characterizing the

vector sphorical harumonics, gﬁ(e,p\, gﬁ(e,p). and gg(e,p).

. .
¢ R M AAI Mo s et Wz e a
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1., INTRODUCTION

In the previbusiarticlel

the retarded .Hertz vector was
obtaiﬁed, for a fully general transient source-current
distribution, The source current,'g(zl,tl)5~was expressed as an
expansion in vector spherical harmonics, with the dependence

upon the angles (9,2, ) contained within these harmonics,

while thg dependence upon the radial distancé ry and

tune source tine tl was contalined within the expanslon
coefficients, Similarly, the Hert:z vector,rn’(;g,t), was expressed
as an expansion 1In vector spherlcéil harmonlgg uwnich were |
functions pf~the angles (6,9), with expansion'coéff;clents

which were functions of the radial distance r and the

time ¢,

It was found that, for a given (m,n), labeiing the vector
spherical harmonics, the expansion coefficients for the
Hertz vector could be expressed in terus of the expansion .
coefficlents for the source current, There was no éoupllng
between the expansion cdefficients for different cholces of n
or'for_different cholces of m, There was, however, coupling
between ﬁwo of the three vector harmonics, those denoted
by gg.and gﬁ s, but no cross-~coupling between eithef of»these.

‘two and the third vector harmonic, denoted by gﬂ .

\

Gl 4G Pt et rnig L
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In the present erticle, this Hertz vector will
be substituted 1qtc the equation |

~

B = € ant , (1.1)
which zlves the magnetic fleld ig "in terms of the
Hertz vector '||» 1in MKS units for which

€, = 8.85% * 1072 rarad/meter . C(1.2)
An alternative formulation will also be glven, in terms

of the vector potentiel, A, defined here by the equation

- 52T | .

For the quasl~vacuum condlitions that have been postulated,

the magnetic fleld H 1is then glven by

2!

g = _Y.xé ’ | | : (10,4’).
(o] .
" where
— = (o] 'y . 1. )
Mo ° . | .3
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2. MAGNETIC FIELD EXPANSION

If the Hertz vector and the magnetic field vector
are both expressed in polar-coordinate components; thern
the veetor equation {1.1) separates into the cdmponent

equations:
H, = ....§..9.... - _§__§_"ﬂ"' + 2 ‘1ne-§— | s (2.1a)
rsiné op ot ''© G ot ''p
H = A—€° 1 _§. ..9.. . - __8_ T ..Q..’Tr ’ (2.1b.)
© r sine gp ot llr ar| ot P

€0 a o ) .-a :
e S EET - SFAT]) e

"

However, it will be more convenient,-and will lead
to field expressions which are more compact, if the
magnetic field vector 1s first expanded in terms of
the vector spherical harmonics defined in Section 2

of Reference 2, This expansion can be written in

" the form:

© +n

g(}:at)

n=l m=-n

+ Hg .(r,t) gi‘;(e,m} . (2.2)

IPREAEE CEIENCRY 08
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Thls suumation begins with n=1 because the spherically
symnetric current component, with n=90, does not give
rise to any component of magnetio field, but only to

‘a spherically synmetric, radially-directed electric field,

Tne expansion (2,2) parallels the simlilar expancions
for the Hertz veotor and for the current-density vector,
ec described in Section 3 of Referenze 1., As in the
earlier expansions, the reality of the fileld veotor
requifes that expansion coefficients which diffeir only
in the sign of m <should be Qomplei conjugates of cach
other, as in the example:

B o (rst)

A : n o aBha b e o e e

[H;"fn(r.t)]* : o (2.3)

PRSI S e o (. -
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‘3. TIME DERIVATIVS OF HERTZ VECTOR

when‘ihe Hertz vector, in thre matrix form in
Equation (?.1) of Rcrerence 1, 1s differentiated with

réépect to the observation time t, the result is

Ty:00 s=(r+r1)

5t [[o,n(7:8) = 2:(LE (ry/x)ar [ 35’?}3(;) Iy n(ryst-s/c) ds.
_ 0 .

r =0 szlr-rﬂ

Thé notation hcre ls the same as the notatioﬁ in Referenge l,
with Greek subseripts running through the three-values r, B, C,
asgooiated with the three vector spherical harmonics, 22, gﬁ; gﬁ.
As in (2.2), the dependence upon time and radialjdistance

.1ies with the expanslon coefficlents, so that when the

time derivative is taken it is only necessary to differentiate__

these expansion coefficients, as was dons here in (3.1).

When the "integration’ over . ds in (3.1) is replaced
by an integration over dty;, with the use of (6.4-9) of
Reference 1, then (3.1) takes the form

& Moralmst) = 5= U (x/n) 8T (2y) IR (ryu8y) dby ary,
. o] . '

(3.2)

(3.1)

E—-




Page 101

where the abbreviation (Jff) has the f‘ollowing equiw}alent

mearings:
\ r =® tl=t-|r-r1i/c .
(J/y = ’ ' , (3.3a)
' riso ty=t- (r+rl Y/ ¢ i
tlFt ryxrc(t-t,) .
[y = , | (3.30)

ti=- rlzir-c(t-tl)l

r =0 tl==t-(r+r1)/c ry=r t1=t-(r'+r1)/c
. o tl-st-r/c ;‘1=r+c(t-t1) f:lat rl=r-ic(t-tl)
un - | -

which define the realm of integration in the (rl,ti)-plane.

o ry=r tlnt-(r-rl)/c i'lrm tlzt-(rl»r\/c
‘f,[) ] f + f f ’ (3030)

’ (3-3d)

lonst 5, i SN s S0 - s
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L, VECTOR IDENTITIES - %

While [orse énd Feshbac‘n3 have glven a number of
mathematical identities involving vector spherical

harmonics, these are not in the form that is needed

A 3
et s timimsem it

here. For the present application, there are three

~ curl identities,

VXPI.?(G).}DW = "P"S"I}i}“')" Cm(eap) ’ ‘ (4.1)

~ e r ~n

4 A CH AN CH- - (4.2)

v<gfites = LENep + TEERLghiogy, @) ' |

- which cah readily be generalized to the situatlion in ‘ 3
whioh'each vector spherical harmonic is rmultiplled by

e scalzr function of the form Q(r,t). The generalized : g

~ identities are "
oxfer] - Eom, I (RO o
gx[q gﬁ = - %—a%(r Q gh . . (4.5)
gx[q &l - 2 (re B o+ T zi"l’qzﬂ . (6)

e 15 S NN AV o ST RO BB | oy
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5. MAGNETIC FIELD

In the interest of a Compact notation, t..e three

vector spherlcal harmonlics will be represented

oollectively by y;nn(e,p), where the Greek index O
’ :

takes on the three values r, B, &, as in (3.1),

The expliclit definitions are:

-

n .

-Yr,n - Eﬁ ’ ‘ ' (5013)
Yoo = Bp o (5.1b)
Cgm a ' -
!C,n = -c-n * . (5.1c)

In terms of this new notation, and with the summation
oonvention for repeated Greek indices, (2.2) 2an be

written compactly as;:

Hxt) Z Z n(F18) Y5 o(0.0), (5.2)

n=l m—~n

with similar expressions for the Hertz vector and its

time derivative.

L4
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In particular, the time derivative of the Hertz vector

can be glven in the form

at'Tr 2(’_ Y. Yo UD (rl/r)s(n)“* Ton(FLoty) abydry . (5.3

n’m

Substitution into (1,1), with the use of (!.%-6), gives:

H:.n’n(r:t) = ‘,“"’"'Il(h'*'l (ff) P (;t) 3 *g,n(rl’tl) dtl drl s (5.8)

r

N

(rvt) -'-"

N*O

'H;n .éc?fr_ [(H) P (L) vy ng’n(rl,’cl) dtq drl] )

r, n(rl,tl) dtld.rl

Hén’n(r,t} = --/ n+L) (Jf) P (L) T
(II’ P (gt > l[rl JB n(rl’t’l)] dtl drl o (5-6)

In Equation (5.6, the second expression on the right-hand
slde was obtained through an integration by parté, in which

the form (3.3d) was used for the integral operator.




R =

Page 105

6. DISCUSSION

BEquations (5.4-~6) give the magnetic field expansion”
cosefficients, which are to be inserted into (5.2)., I%
can be seen that there is an element of symmetry in the
dependance of the three magnetlic~field components upon-
the three current coumponents,; but tbét the symmetr&
1s not as convenliently expressed in matrix form as waé_
the case for the Hertz vector itself, as given in

Eq. (7.1) of Reference 1.

While the forns (5.5) and (5.6) were chosen here
because of thelr compactness, there are other forms
for thesé magnetic field components which avoid,thé
use of the operators J/or and &/or;. These other
fofms can be obtained from (5.5) and (5.4) through
integration by parts and through the carryling-out 6f
indicated differentiations, |

me ta e e Emlim oy Avan
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ABSTRACT

The retarded Hertz vedtor, obtalned earlier, is 0T ‘; : ‘
| differentiated to glve the scelar potential and the
electric fleld vector, assoclated with a general transiént . 3
source~current distributlion, The scalar and vector | |
quanﬁities are expanded in terms of scalar and vector
Spherical harmonics, For each node, characterized by
.specific values for n and m iu the expénsions,
bhe>sca1ar potential and electric field vector are
expressed as two-dimensional 1ntegralé, in the (r,t)-plane, ' '1
over the causally-accessible poftion of the sousce-current

distribution, . -,
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1, INTRODUCTION

In the preceding artldiel, expressions wére obtained\
for the magnetic field componsnts assoclated with a general
transient current distribution, Similar expressicns will
now be derived for the electric field components, and
as before these ¥ill be derived frbm the previously derived

the components of 2
oxpressions for/the retarded ZHertz vector .,

In terms of the retarded Hertz'vector'Tr , the electric

field vector is glvea by the equation

: 1 32 -
E = VVy° - (L)

In terms of the more familier scalar and vector potentials,

the electric vector is

g. B - VQ - "§" (1.2)

>

The identification of the vector potential,

l 8 ' .
- 52T, o (1.3)

has already been made, in (1,.,3) of Reference 1, A corresponding
identification of the scalar potential, in terms of_the

Hertz vector, is:

vf--!"l;l". ‘ - e

T e e b i e e N’ L L L
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2, SCALAR ID3ENTITIES

In analogy wlth the vector identities gilven in

. —. Section 4 of Reference 1, there are certain scalar
identities which arise from the action of the divergence
operator upon the vector spherical harmonids, and upon
ﬁroducts of a scalar fuﬁction, Q(r;t), aud trhe vector

spherical harmonics,

The threc basic divergence identities are

vEle,e = 2 xle,0 , (2.1)
v Ei(e,p) = -'nzn*l (e, 2 . (2.2
on(e,9 = 0. | , (2.3)

"The scalar spherical harmonics, xﬁ, and the vector
spherlcal harmonics, Eg, gﬁ, and Qg, have been
defined in Section 2 of Reference 3.

The more general divergence ldentities, in which

each vector spherical harmonic is multiplied by the

scalar function Q{r,t), are:

ke

irbe A S
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velep®| = = &2y x®, A
119 En 2 (7 X (2.4)
P T — .- ~"
2. LQ gﬁ- - 41‘1{:4-17 ﬁ , (2.5)
v -Qsﬁ = 0, - ) (2.6) . '

As will be seen, it 1s the vanishing of the divergence
in (2.4) that can be associated with the fact that

the source-current components involving the vector
sphericsl harmonics gﬁ do not lead to any charge
acbumglation, hence these currénts do’'not give any
eleantrostatlic contribution to g(g,t). Tnese currents
are-clrculatory in chéracter, and make only inductlve

and raﬁiative rielé contributions,
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3. DIVERGENCE OF HERTZ VZCTOR
In thne evalﬁation of the divergence of the Hertz -
veotof, one of the functions cdefined in Section 7 of _ - i

Reference 2 appears repeatedly., This 1s the fuonction

- 828 .
Gé':zz(r;rl,s\ = P, (L) ds , | ‘.3.1)‘
s=0
- where _ .
g" 'z "—]_""— (r? + r1? - 52‘ . (302‘
er1 _ .

Speclal values of this function are

. , ’ .
G(n (r »Tq ,r+r1\

A (2n+1)"'1 (2P D 4 BP0 (3,3a)

e | 1 1
) . - " - =
Gér:c(r,rl,r-rl, = (2n41) 1 _(rn"]'rll'1 -r nrfﬂ?y (3.3b)

(2n411" (- o2 rl"n + P rln"'l). (3.3¢)

"

Gé?%(r,rl,rl-r)

Equations (3.3) are established in the Appendix,

S s Y
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The»divergence of the Hertz vector doecs not involve

the source currents with the J.° syrnetry, as noted

C;n

earlier 1in connection with Eq, (2.6). However, both the

J:’n and the Jg‘n asurrent components make contributllons
] ]

to this divergence. The explicit form for this divergence 1is:

{- r = I
¢ = A - r a_ll1 .(n m :
~ | 1l 3r. [rl GC (x,2, ,r+r1)] f Jr,n(rl’tl) dtl drl
ry=0 * t. 5t
1 A
ry=r ) L tlct-(r-rl)/c
P4 A n) m
+ ry 31"‘ [rl Gc’c(r,rl,r--rl)] Jr,n(rl’tl‘ dtl dr:L
rlro tlzto
ryg® tlzt-(rl-r)/c
+ ry oy [rl (r, rysTy-T) | Jr,n(rl’tl) dt] drl
= B L |
Y 2.3 (n u |

rcho t1=t (r+r1 /¢

I'4

- Ya(ad) J c-*“‘(r ryr ) f.r(n’(rl,t ) dt, dry
r1=0 tl-gto

[EETFRIS ¥ SRS - N PR
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ryEF ( t1=t-(r—r1)/c ;
n) - n )
+ “n(n+l) Gc,c(r,rl,r-.l)_ JB’n(rl,tl) dty dry ;
ry=0 | t =ty , | ' g
| rl:g:( 65t (ry-r)/c ;
Voou pourc e nd, m :
+ /n(n+l) Gg,g(FaTy Ty -T) Jg,n(Tysty) &6 dry
| rymr tlcto

o
1

- Ynma)y (/) ng:(r’rl’ct‘“l) Jg,n(rl,tl) dtl drl ——--—-2€1 = ﬁ(esﬁ).
B : o* .

(3.4)

The integral symbol (ff) has bteen defined im Eq. (3.3)

of Reference 1,
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4, ELECTRIC FIELD

Ti = eleosric field vector is obtalned from Egq. (1l.i).
" This includes an operation Jn which the gradient of the
divergence of the Hertz vector is taken, and for this

operation 1t.1s convenlent to make use of the identity

-g[q(r,t) )ﬁ(e,p)] = [5@; Q(r,t)} £(6,9)

+ /afad) Q(r,t) Fi(e,2) . (k1)
The s2cond time derivative of the Hertz vector also appears,
and this is bonvenlently found from the time derivative

of the expression given in Eq, (3.2) of Reference 1,

s - e ot e o i ot e e et

After an integration by parts, thls second tiue derivative 3

is found to be expressible in the compact matrix form: o

2 | 5;
i‘g‘Wd?n(r’“ ] 5__2: (S0 (ry/ry s88) (g, [-é;i’—l- J;:n(rl,tl)] by axy o

®.2)
As before, a Tepeated Greek index indicates summation over j i
the values r, B, €, and the functions génl are as
’

defined in (7.2) of Reference 2,

s
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When the operations indicated in Eg. (1.1) are
carried out, the resulting expressions, for the expansicn

coefficlients for the electric field vector, are:

L 1A°
L .
E:r,n(:"t) -7 €o f T, r(r tl) dt,

r =T ty= =t (r-rl)/c

12 (n+l) poB-? L0+l g .
(Zni) €, Ty Ip,nfrysdy) dty dry
r1=0 t =t°

r, s tl'-;‘c—(rl-r)/c :

n (n+1) - n-l
e
(2n41) 60 | T rl r n(rl,t: ) 4ty dr;

n (n+l) -n-2  u+l n-l_ -n, .m

2(2n#l) & Ty
n {(n4) (n) ' m
+ - €. 5 =% () Gy (r,r. 10ot=ety) T (7 sty) aty ary
(n) /n(ndd) -n-2 _n+l
“(mu) €, T, n(rl’tl)dtldrl
ry=0 &yt

i
&
i
£
g
b

T

T B S e R T 3 s

o ;‘.;‘_;m;‘wu_u‘.._.x, -
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(nl) €, .
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o .
n(rl ,tl) dtl drl

n-l, -n m N
-nuy Ty ] JB’n(rl,t:l)duld.r?L

Jn(nwl) (n) | | \
e A [r1 e e@dtmmy ot ctl‘v] Tttt e (u 3
. o |
_ o ryEr t1=t-(r—r1)/c
' ‘ n/n(nil) -n-2_n+l .m .
( EB n(x t) - -(.5-1;+1)E"0 r ry n(3:'1,1:1) at, dry
. J J, .
C o Ta=00 to=t-(r,-Y/c
et 1 1, 1 .
(n+1) Yn(n1) n-1_-n .n
T (e, J T ey Jn Tyt ) Aty dry
. RIS L
"m‘- n-2 n+1 n-l .'1
‘ -~ < () e e IR (2, Lt YaAb, dr.
2(2n+l) €° (”)[ 1 (n+1) 1 ] r,n( 1aby)aty 1
+ n(n- 1)

Zeor

(N [ r= c(“)(r rl,ct ctl):] r, n(rl,tl) dt, dry
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n (n—xj‘.\.)“
(2n+l) &
° —
ry=
n (n+Xx
2l I (r
2(2n4) &

2 C r'é' (Jf) [I‘ Ty
*0

r, =0 ‘t,l::..t
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ryE© -
n m . :
— f(-l) Ty JB,n(rl’t"[l+r1]/°) dr:L

1
2€, 0T
I‘1=0
ry=Tr x
W
2¢, 0o 1 B n
ry=0
I‘1==03
e s ot N m _ _ .‘
‘ ry =T
- (—I}-ﬂ'-z'- r-n-2 n+l

JB (rj,tl) dty dry

© ty=t- (ry-r)/c

n-l -n ,
1 JB (rl’tl) dt' dI‘l
=t°
-n"z n*!-l n-l =1 il ¢ - . ]
ry T Tp) Ig,n(r1sty) 0 aﬁ |
......E.... G(n’ (1" r. sob~cE ) J (r )dt ap
Geor, GO LT 12%y) d%y dry 5
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4 | _ - . | | ‘ |
(ff) (rl/r) Pn(gt)['a“q Jcm,n(ll’tl’] d'tlo'rl .

(k. 5)

3
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5. DISCUSSION

Equations (4.3-5) silve the components of the
electric field, in terms of the components of ths source
current, These equatlons are not given in the general matrix
' for the present
form, sincs their relative complexity precludes/a simple
matrix representatlon, Howsver, there are elexents of

symretry lnvolved, and a conpact matilx representation

nay eventually be devised, .

The electric field coudonents are here glven as

explicit integrations over the source-current components,

For the inductive and radiative conbrlibubicns, the integration

'is limited to the realm spscified by the notation ([f).

'This realm limlts the source currents which are 'visitle!

at the obsérvation puvint, However, in additicn to these

‘ 1mmed1atély~senscd contributions, there are electric-field - -
-'contribﬁtions vhich are electrostatic and are assozlated
with earlier flow of curren?d, establishins'a‘distribution

of electric charée which generates an electrostatic field,
The contridutions to the electrie field which are assoclated
withjthis électrostatic dipdle-noment distribution are

- expressed in the intezr 1ls which.have as thelr lower limlt

tlr-to,‘whére to is a time precading any of the transient

- o wm

e i o
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ourrent flow which contributes to the fields that are

belng calculated,

The iuportant aspect of Zquatlons (4.3-5) is thelr
expression of the causal rclationship between the source
.ourrent, J, and the electric field, E, which is generétéd
by this source current, when these esquations are used as
the bés;s for a numerlc=2l solutlon of Maxwell's equations,

the requirements of causallity will be met.l"r

iaRenata.

il AP NS
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APPENDIX

For the derivation of Equations (3.3), it will
first be noted that the Legendre'polynomial' Pn(g),

which can be written in the form

1 ¢, 2. nm
Pn(m = -2-{1-;1-:‘ ;l—g_ﬁ(g 1),

is an odd polynovmial in ¢ if n 1s odd, an éven

polynomial If n 1is even, so that
- 130
P (-2) = (-1 P (D),

When the argument ¢ 1is written out as

-

't gzyp11££ Ty = 8T),

then the Legondre polynomial Pn(g) _hes the form

1l
Po(t) = —

£ (r%, r?, s?) ,
(21‘11

)nn

where the function fn 1s 2 finite polynomiel in its

three arguments,

(A.1)

(A.2)

(A.3)

(A.4)
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It follows that the integral
s=1
Fh(r:rlsn) = Pn(g) ds (A.5)
£=0
is an odd polynoﬁial in R, so that
Fn(r!rlt"a) = - Fn(r’rl’R) . . (A06)

It can also be shotm, from the form of (A.4), that

Fn(-rsrlnn) = ('1)n Fh(rarlsR) ’

Fh(rs‘rliﬂ) = (“l)n Fn(rsrlsR) ’

Fh(-r,-rl,R\ e Fn(r,rl,R) .

The three integrals to bz evaluated are

8=r+r; . -
Fh(r,rl,r+rl) = Pn(g) ds ,
. s=0
A §=r-ry
8=0
. Fh(r,rl,rlyr\ = Pn(;) ds .,

'(A.?a)

- (A.7D)

(4.7¢)

(A.8a)

(A.8D)

(A.80)

© s it vt
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All three ere defined hare with no restrictions on the
relative masnitﬁdes of r and fl. Fron (A,4) it cen

be seen that .
Falrsryor-my) = = Fplramyamy-7) o - (a.98)

end from the symmetrical way that r and ry enter into

£, in (A.3), 1t is also clear that

Fp(rysrsry=r) = - F (r,ry,r-ry) , | (A.9b)

Fn(rl,r,r1+r) = Fh(r,rl,rﬁrl) . ' (A.90)

BEquation (A.3) can be solved for s, glving

1/2

%y . (A.10)

s = (r?- 2rlrlg +

When r and ry are both held constant, the differentisls

ds and df will be related by

sds = - rrydg . (ALY

If ry is smaller than 1r, the expansion

r A Ty ' rl2 ' .

oonverges, and it 1s possible to write

,.:.fy,‘r-ﬁh;g;::i%m"" o M i

b‘f

e

s .
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‘multiplication of Fh(r,rl,R) by (Zz'rl)n will cancel the

Asides.by (21‘r1)
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sﬁr+r1 '
Folr,ry,riry) - Fplr,ry,r-ry) = P,(2) ds
| s=r-r;

g=-1 . g=41 n

r .

= - s1lry P (tyYday =r P (2) & df =1y 3 2 o (A1)
: l"n's | 1 n'*' s .rn (2n+1)
g=+l g=-1 '

. In (A,13) the series (A.12) has been substitubed, and the

orthogonzlity properties of the Legendre polynomials have

been utilized,

If, on the dthef hand, ry is greater than r, then the
convergent series expansion 1s

r . 2
L r T
| ---—-8 = APO(Z) + -1-;]-.- Pl(g)r + ;;é- Pz(g) + a6 (_A,]_b,)

and the resulting equation, analogous to (A,13), is

. n
2
F (237 ,247.) = F (T2 ,ra=r) = 1 X . (A.15)

From (A.4)-and (A.5) it is apparent that the

factors in the denomlinator and give a finite polynoﬁial.
In particular, if Equation (A.13) is multiplied on both
n! it will becoxe a relationship between N

the sum of two finite polynomiels (on the left) and a

[P
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o4
F
&
H
'T

monomial (on the right)., Evidently all of the terms in
the two polynonmlals must subtract out, except for the
terms which add to give th~ monomial on the right. Moreover, : é
this algebraic relationship involving finite polynomials, . . 49
vhile established for Ty less than r, can be oontinuéd .
analytically to 1nolﬁde the reglons where ry is greater than r,
Simlla%ly, Equation (A.lj\, while established for ry greater

then r, is a simple nlgebraic retlationship which can be

continucd,analytically to ths realm where Ty is less than r,
When (A,92) is inserted into (A,L5Y, ‘the result is-

. . 3 . n . :

2" :

F_(r,r,,r4r;) + F (r,rq,0v-ry) = r -Fo —Zi-, (4,24) ;
n LT R S (204 “.
Now, from (A.13), (A 14), and (A,9a), the deslired rgsults

are obtal: ed-

) . - L ey “n . n¥l, - . o
Fn(r,rl,r+r1) = ‘2n+1) _1 (rn"l rlvf i+ r nrln ]f) ’ (A.17a) |
-1 - - + : :
Fn(r,rl,_r-?l) = (2n4l) 1 (rn+1 rln -7 nrln l) , (A.17Db)
Fp (r,2y,7 -7) = (2n-2)"Y (- P12 rl'n + p0 rlnﬂ) 5 .(A.'17c)

" These results are equivslent to Equations (3.3), since it

P PRI R SR 5 Do

is -apparent from the definition of F, in (A.5) that

B(r,r,B) = G $rry R (A.18)
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ABSTRACT

Maxwell's eduations in differential form do not

distingulsh between advanced and retarded solutions.

‘Unless special precautions are taken, a -point-by-point

numerical integration, using a finlte-difference version
of Maxwell's equations, will lead to a mixture of

advaqged and retarded fields, which 1s inadmissible

on physical grounds. The causallty requiremenﬁ cén be

met if Maxwell's equations are writben in 1ntegfa1-equation

form, with retardation incorporated in all the iategrands,

A solution using nuamericael integration theﬁ_will be

physically acceptable, The distinction between causal
and non-causal solutions 1s 1llustrated by an example

in which the problem symmetry permits separation of

'variables and the reduction of the four-dimensional -

space~time problem to a two-dimensional problem involving

only radial distance r and time &,

ks e b b Eaibeans g
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1. INTRODUCTION

Maxwell's equations, as they stand, admit of two

kinds of exact solutions for the electromagnetic flields

generated by a specified time-dependent distribution of-

electric charge and current, These are the retarded
solution and the advanced solution, An example of

& retarded solution 1s the Lifnard-Wiechert solution for
the flelds generated by a moving charged particle.l
Tﬁe flelds at an observation point are expressed in
terms of the position, velocity, and acceleration of
the particle at a time which is earlier than the

observation time, by an amount sufficlient to allow for

propagation at the velocity ¢ from the partiocle to the

Apolnt of observation. -

The-—same equations™ can be used for the corresponding

advanced solutlon, if the particle's position, veloelty,
and acceleration are taken from a 1ater'point along its
trajectory, where the particle tinme, tl, and the Qbse}vation

time, t, are related by

t, =t +s/c, )

fwlthr 8 " the bropasatlonAdistance. In thils case, the

radlated r;elds are recelved before they have been emitted..
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It 1s obvious, of course, that the advanced solution,

? : '»inwolvlng (1.1), 48 to be excluded on physical grounds,
L and that only the retarded solution is to be considered
as_satlsfyins causality requlirements, However, both

are exact solutions of Maxweil's equations, so that the
gelection of cane over the other must be made on the basis
of an auxiliary condition or requirement, which is not
expligitigyiggéziged in Maxwell'é equations theuselves,
Without this auxiliary condition, a general soiution for
the electromegnetic fleld  assoclated with the moving
oharged.partiﬁle would be a superposition of the advanced
and retardea solutions, with an adJustable*paraﬁeter

specifying the proportlon: in which these two solutions

entered the. general solution,

In oases where exact solutlons of Naxwell's equations
are not avallable, numerical méthdds can be used, based
on a finite-difference analog of the differential equations,
Bowevér. the problem of causallty will arlse here sgaln.
S8ince the differential equations do not distinguish betieen
advanced and retarded solutions. the finite-dlfforenoe
analogs of these equations will be unable to make any
such distinction, As in'the case of the differential équations,

an auxiliary condition must bte imposed, to select the

‘retarded solution.
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‘fhere 1s a olass of difficult but important problens,

in vhloh an imposed prinmary ourfent of transient form
8
moves through and near/reglon: .of transient conductivity,
a secondary

The fields from the primary current induce/current: in
the reglon: of finite conductivity, and this: secondary

ourrent ' makes"''its own contribution to the looal

fields, - -~ Hence tne secondary ourrent will 1tself: ==
of its omim radiatior.
be modified as a oconsequence/ An integral equation ror

the seoondary current: has then to be solved, However,
all of the field contributions, made by primary current
and by séoondary current,. must de’ retarded fields, if the

.oausallty requirement 1is to be satisfied,

in the general case expressed as
While a problem of this form is/e four-dlmenslonal, .

space-time integral equation, there are certain speoclal
symmetry conditions, of importance in practical examples,
which permit the problem to be separated in polar coordlnates,
and reduced to a.two—dimensional problem involving only

a radial distance and the time varlable, Unfortunately,

the reduction to two dimensioggfggggur°s the causality
‘condition, if the set of differential_equations is transformed
directly and then replgced by the corresponding set of

finite-difference equations. An attempt to solve these

equations numerically2 leads to a serious violation of

- oausality. requiremenus, as will be shown later,
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. A finlte-step procedure which utilizes a set of
| lattice points in the (r,t)-plene, but which satisfies

causality requiremsnts at every step, is also described

here, This 1s a lattlice varsion, or finite-difference

version, of an integral method developed for the solution '

of electromagnetio transient problems.’ This method, like the/
mekes use of an expénsion in veotor spherical harmonics, for

the soufoe ourrents and the fileld vectors?.'

The latﬁioe.verslon of the integral method is an
dcoerative solution of the integral equation for the

{ seoondary ourrend;. The iteration progresses outward in
radlal distance, and forward in time, within the problea
domain in the (r,t)-plane, At each step the local elestric
field. is oémputed, aé e summation of the contributions of

. pripary and secondary‘ourrents previously computed, with
retardation fully accounted for, The product of the local
electric field and the local conductivity function (a knowm
Quantity) is then equal to the secondary currggg7égythat
lattice polnt.‘ Tnis secondary ocurrent is then added to
the'pr;mary ourrent at that lattice point (a kmown quantity),
'fhe iteration 'mow progresses to _the nexf point 1in the iattice,

. and s0 on, until the full distribution of the secondary

ourrent, over the (r,t)-plane, has been deternined.

differential methoc |

i
i
1
4
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2. SECONDARY . CURRENT

The causality prodlem 1s illustrated most clearly
if the trancient conductivity funotlion does not depend

on angle, tut only on raldial distance and time:
¢ = o(r,t) . | (2.

It will further be assumed that the secondary current 1is
strictly the product of the lnocal electric field and the
lcoal conductivity, independent of the magnitude of the
local magnetioc field, ' In other words, the Hall coeffiocient

for the problenm region will bs assumed to be zero,

Under these sinmplifying conditions, the ocurrent

donsity can be written as
g = K + o(r,t) E, | (2.2)

where‘5\ is the primary current, For the particular
problem toward whioch thls analytical work has besn dlréoted,
the caloulation of the electromagnetic radiation associated
with a nuclear detonation in ?he lower atnosphereu. the
priméry current ‘53 ooﬁslsts of' Compton electrons ejected

from air molecules by gamma-rays froﬁ the nuclear reaction,
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Tﬁe oonductivity &(r,t) 1is due to the momentary presence

in the ailr of free electrons, released in the lonlzing
oollisions which slow these Compton electrons, plus the

later pfesence of heavier lons, such as the 05' ions formed
when these free electrons become attached to oxygen molecules
in the alr, plus the positlve lons left behind when the

Compton electrons were ejected,

while some bendinz of the trajectoriés cf these

charged particles is to be expected, in the transient
magnetic field th't 1is generated by thelr motion,_it will
be assumed (as noted abovef that the éegdndary current
component generated by this bending 1is nesligiﬁle in
comparison with the currant 'J 'given in (2.2), '%’Tne
advantage of these simplifying assumptions is that there
results a clean separation of the problem into a sequence
of modes which are not coupled together, The integral

equation for the secondary current Separates into a

set of uncoupled integral equations, one for each mode,

T At G R o o
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3. SEPARATION INTO MODES

When the conductivity fﬁnctlon has the form (2.1),
~implying that the physical process to be analyzed has |
".a center of at least partial symmetry, it is appropriate
to make an expansion in spherical coordinates about this
central point, In the example under considerationu,
the ceniral point 1is the 1dcat1§n of the nuclear detonation,

. $throush—this
which produces the primary current and/the transient

conductivity,

The electric and magnetic flelds, E(z,t) and H(r,t),
..'yill-be expanded in terms  of the vector spheriéal harmonlcs,5
Po(e,0), Bl(e,p), and Cp(e,0), The engular dependence.is .

- contained within these Earmoniqs, while the expansion
| ooefficienté contain the dependence upon radial distance, r,
and time, £, The electric field, in particular, will have |

fhe expansilon

: o ' .
§(£,t’ Z Z {Em (r,t) Pm(esp) + Em (1‘ t) Bm(e:p)
- n=0 n=-

+ (T:t) cm(esp)} (3.1)

Y LT e Sowmn A




Page 127

The mhgnetlc.fleld has an éxpanéion of the same forn,
but with the expansion coefficients in (3.1) replaced by-
By a(rst), Hp  (r,t), and HZ (r,t), Similarly, the

.. source current, J, and the primary current, K, will
.have expanslions in terms of the same vector spherical
: , harmonics, but it will sonetimes be convenlent to write

the source current as g(zl,tl), with an expansion

T o e R

(. . involving such terms es J:in(rl,tl) fﬁ(el,pi), in order
‘ - that the source point (r;,t;) should be clearly distinguished
from the field point (r,t).

[ Wnhen there 1s rotational symmetry about the vertical

..  axis, so that the source current does not depend on the
_azinuth engle pl; then the flelds wlll also be independent
of P, and the expansions such as (3.,1) will bs limited to
"~ those terms.for which m=0, Furthermore, 1f the source
ourrent consists of radlsl and polar components only, with
no ocurrent circulating about the vertical axis, then the
expansions will be limited still further, With these
simplifications, the electric field (3.1) is reduced to:

E(Est‘ Z{ (I‘,t) Po(esp) + EB n(r:t) BO(Q:P)} (3 2)

n=0 -

e s oy




Mot el o s

Page 128

_ while the magnetlc field takes the still simpler form:

w
' g(}::t) = Z HC n(r’t) C (9,,0) ’

- n=l

the term with n=0 being omitted because the vector
spherical harmonic 98 is idehtically zero, as is §8 ’
ihough .I:g ~does not vanish,

The expliocit forms for the vector spherical harmonics

in (3.2) and (3.3) are

23(6,,0) = Pn(cos ), (3.4)
. -a _
Eﬁ(esP) = :7§%§i§= Pi(cose) ’ (3.5)
0 = ._.._.9__ LW
C (es ) = (OOS e) (3-6)
a2 /n(n+) ’
V{here Pn(qos 8) are the Legendrg bolynomlals, and
1 d |
 Ppleose) = - TS P,(cos @) . -
. §
= Slnem—s—é-)— P (cos ©) . (3.7)

The unit vectors 8.1 &g gp can be expressed in terns

‘of the rectangular-coordinate unit vectors, i, :1' » Ky throx_igh:

R, e Y il &

R,
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& = 18inGcosP + J sinésin® + k éose,.
8 = 1 00s8cosp + joosésing - k sine,  (3.8)

&8 = -1sinp + § cosp, | |
.- '

The Legendre polynomialé satisfy the second-order

dirferential equation

. .2 y
a d :
9 = P,(cos @) + cot® —= P, (cos @) .+..n(n+1) Pn(§os e). (3,9). |

It will be assumed that the medium is the vacuum, and
that 211 dielectric and conduction effects are 1nterpre£ed

through secondary currents that will be explicitly computed

during the calculations., Furtheruore, it will be assumed
that the dielectric effects can be neglected in this‘:analysis,
and that the conduction effects can be incorporated into the

source-current distribution through Eq. (2.2).

With these assumptlons, ngwell's equations take the form

Y = K +0EF + € E, B (3.102)
YXE = -p 2§, - - ~ (3.10b)
o~ - }lo at~ . ) .

in MKS units., When the primery current K 1s glven an

- 'expansion cof the form (3.2), and when E and E are represented
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by (3.2) and (3.3), substitution into (3.10) leads to
the three scalar equatlons2 '

3 | o

'r ar (r t)] KB n(r t) + o(r,t) EB,n(r’t)

+ & aatEB AT (3.11)

v/n(n) H:n(r,t) = ig?’n(r,t') + o(r,t) Er"’n(r.t)

i

. 0 ' '
+ & 'a‘EEr a(Tst) 5 (3.12)

e A G o n e+ ST

'a'a;[r Ep. n(r t)] - LAty n(n+1) ..° (rst)

e § Lo

Q
‘ﬂoéi'nc n(r t) =

(3.13)

When successive integer values of n are substituted, each
modé is then described by a set of three coupled first-order

differential equations relating the unknown field components,

Ero,n . EBo,n R Hc?,n » to the (presumed to be knowm) primary

0o
Byn ?

‘be known) conductivity function, d(r,t),.

current components, Kro,n and KX and the (presumed to

Equations (3.11-13) are a transforﬁed version of Ma.xw.ell.'s
equations (3.10), and therefore admit- both retarded and
advanced solutions, or arbitrary linear oomblnatloné of
-retarded and advanced éoiutions. The physical causality
requirement .is not contéined in (3.11-13), and pust be

specified through an auxiliary condition, if mathematical
solutions of (3,11-13) are to represent actual phenomena,

- .. e e e ———o i -
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4, RETARDED HERTZ VECTOR
A solution to Maxwell's equations, and in paptioular
a solution to the scalar egqyations (3,11-13), can be based
on the retarded Hertz vecfor. In this way the limitation
to the retarded solution, with the complete exclusion of

the advanced solution, i€ fully enforced.

In terms of the Hertz veotor, '[[' , the eluctric and

-~
magnetic field vectors are expressed through6:

: 1 a2 - .
E = v - = 2T N (%)
* .-~ Ir ol atz'” .. . ‘
. _ . .
E = € vx<=T . * (4.2)
o O~ atN . .

The retarded Hertz vector 1is a.function of the actual
.source-current distribution, J, as.given in (2,2) for
the special symmetry which 1; being conslidered here,.

In the gencral case, with the source-current.density
g(fi’tl) given the full expansion, involving the veotor
spherical harmecunlcs gg, Eﬂ, and Eﬁ, the retarded EHertz
3

veotor” separates into modes corresponding to the modés
for the source current, Fbr.each mode, the Hertz-vsctor
expansion coefficients are given in terms of the

. source-current expansion coefficlients by the matrix eqﬁation:

e et R PN OV WU VR PRUe W 500

ot b camecbis s o

it iimemlih 4 e st s
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. {

: . )

j_ ry=® o) t1=t.-(r+xfl)/c | ’

L Trd.n(r.t) = TE, (_"1/") ary Gd")‘(r.rl.rwl) "i.n(’l'tl)“; |
r]_:r ' ‘ : t1=t" (r"rl )/e 1 ' 4
- '2"'%;; (rl/r)drl G(n) (ryry,rery) | ‘Jf,n(rl’tl) at, ‘ g

r1=o . tol:t’o

r.zo | tyst-(ry-r )/c :

1 (n) m i

2 €, f("l/""“‘l RCILT ’ (Tt

. ryEr 4=t §
. r1=r t.1=t.- (r-rl)/c |

- 1y=0 . tl=t-(r+r1)/c - S
, L YRt lryer)/e o
3z e f(rl/r)drl (n)(r rysetecty) 30 (et )aty o (4 3)% y
i‘1=r : t1=t- r+z.'l )/e ;

The Greek indices, ¢ and A, run through the thres values:
r, B, 8. A repeated Greek index indicates summation over these 3‘ 1

three ,values. Thus (4.3) represents three .equat.ions, according

es ¢ represents r, B, or C.

. U AT NN L g 5y 3 A7 e ey ot e, -
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In Eq. (4.3) the Green's functions G(n)(r rl,s)
are odd functions of the parameter 8, and can be

defined through

8=8 _
""(r ry,8) = sén,{(;) @&, (a.8)
8=0 |

. Where the varlable ! 1s defined by

1 2 2

g = 2”1(:- +r2 - %), | (4.5)

and the nine functions sé?ﬁ(!) are{
el)(e) = ;rnm. ' . (4.68)
| sgng<g>= er(2) %——%f—rn(’!)' (4:6b)
) séhg(z) = (L), _ " (4.60)
(8)(y) = o(0) _(-18) " " ea
Bale) = el = ——= = ,,(;). GCY
s}."’(;)-s""(n- 0, o (4.60)

sgng(!) = s(n’(s) = 0. L . " (4.61)
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In the integrals in (4.3), the time ¢t_ 1s chosen to

(3
precede the initiation of the transient current flow, which
1a»responslble fop the generatlion of the fleld dlstribution
which ;s incorporated into the Hertz vector (4.3). Anf
pre-existing‘etatic electric field can be expresséd as

an earlier flow of current, producing the dlstribution ofl
electric charge whilch is to be associated with this initial
electrostatic charge.dlstridbution. Thus if the inlitlal
moment, t,, 1s pushad back far enough in the time scale,

the Hertz vector (4.3) will incorporate all transient
effects and eny pre:exlstins statlc effects.

e

Ohce the retarded Hertz vector (4.3) has been expressed
in terms of a partlculér source-current distribution,
the_cdfrasponding elecfric and magnetlc fleld vectors can-
be calculated directly through (4.1-2), and it is found

that the mode separation is retained. Fof the particular

eymmetry described by (3.11-13), the three nonvanishing

electromagnetlc field components are all found to have

explicit representations of the same general form as (4.3).
' " 0 0 0 :

Each of the components Er,n(r’t)’ EB.n(r’t)’ Hc’n(r,t),

is expressed as a sum of several integrals containing
with the integration

. <0 0
1J&’n(r1,t1? o? JB,n(rl’tl) in the integrand,/taken over

the causally accesslble reglon of the (rl,tl)-plane.3

IS .
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5. RETARDED FIELDS FOR FIRST MODE

The mode for which n=0, which will be called

. thetzeroth-. -'.» mode,' involves only the radial conponent

field :
of the eleotric/and the radial component of the current
w—

"density. The,";quation that relates these radial components is

t]_-t. .
' Ero’o(r.t) = - ;é; f J:,O(r’tl) dtl » (5.1) -
t].‘to :

which 1s equivalent to Gauss's law., For this molda the
present

effects of retardation are /: in the revarded Her:z vector,

but drop out- when the electric field .(5.1) 1s computed

from the Hertz vector,

Howe.'ver. reta'rdation effeots remain in the field
ocomponents that are computed for the mbde with n=1,
which will be called the 'first mode.' The distinction
between causal and non-causal solutions of Maxwell's
equations can thus be illustrated by the fields
assoclated with this first mode, It will be assumed,

as stated earlier, that the circulatory ourrerit 'component ;
0 0

" and Hco.l are generated, The retarded fields, obtained from

the retarded Hertz vector,‘ willl-then be written explicitly,
with the ald of the abbreviation:

L USSR

e R VN

JC,I s 18 zero, so thap only the fleld components Ez?.l ’ EB,l ’
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‘ ry=r tlat-(r-rl)/o TyE© tlat-(rl-;;)/o *
n = f + f f »  (5.28)
ry=0 tlst-(r-o-rl)/c rlnr' tlﬂt-(r-i-rl)/o

which can also be written in the equivalent form (but with

the order of integration reversed):

P A e A (R

t=ew = -r+c(t-tl) tl=t-r/o rlar-o(t-tl)

In (5.2b) the limit ¢, =-o will ordinarily be replaced by -
t =t,, where' t, 1s a time preceding any of the transient

ourrent flow,

The radial component of (4,1), for this first mode, gives

t=t

0 1 0 L
Fl”to

2 /.3 0 o ,.
. (rl /r?) [‘Tr,l(rl’tl‘ +4/2 JB,l(rl’tl)] dtldrl
r1-=O t1=t°

3€,

:
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ry=© tl--t-(rl-r)/c ‘ : '
+ -3-% : (l/rl) [q/- l(rl,tl) - JB l(rl,t )] dtl drl
ry=r tl=t°
- (If) [(r 2/23) 4+ (U/r )] 30 (r ,..t ) dt, dr
35‘0 1/ 1l ] r,1'171 1771

- 5@0 (0 [2 (2727 - /] aga ety aty any

+ 320. 3(1‘ +r1 )c(t-tl\ - c (t-t )BJ f’l(rl,tl)dtl drl
F -
2/6- un. (1/r 3(r2_r12 yo(t-t) - °3(t"t1)3 Jg,l(rl,tl)dtl dr]_t

The comnonent of Eq, (4.1) which is in the polar direction 2
gives the result, for this first node:

rlf-‘w
o 1 - o . . -
EB,l(r’t) = -é-—e-: (rl/cr) ,JB,l(rl’t" [rfrl]/c) dry
' r1=0
1 I‘l I' '
L T30
0
- ZE, (ry/cr) JB’l(rl,t-[rl-r]/c) dry
I‘1==I‘ '

(5.3,

b e i beiltstriene A N
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yf-' TyEn by (r-rl)/c %
- -5-2-; (rl /r3) Lr 1(r1,t ) + 1/- JB l(rl,t ):] dtldrl ?
' r1=o tl=to §
i'1=oo t,=t- (rl-r)/c ;
+ 2 (1/ry) | #2 32 (rt)-J (ryty) | dt, arg
3 €, 1 s1V°1°71 s1'7°1°71 o
+ 64/26 Un [(rz/r3) -2 (1/r1)] 32,1 (eysty) dby dny
+ 32°~ (N [(rz/r3) + (1/r1)] ng(rl,tl) dty dry L.
1;/C- (N @/ ry) [3(r~-r1 Ye(t- tls + o2 (t- tl)ﬂ f,l(rl,tl)dtldfl
(N) (1/x7r,) | 3(%+ (6-t,) + oo(t-t )BTJO (r. b, Ydt, dr
12C rory rZ4r,2) ob-ty) + 07 (t=t1)7 |Tg 4 ()8 db dry
(5.4)
The nonvanishing component of Eq., (#.2), which 1s in the %
azimuthal direction a gives the corresponding equation |

for the nonvanishing component of the magnetic field:
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T, =0
Hg.l(r,t) = -% (ry/7) Jg,l(rl,t-[r-i-rl]/c) dry

r1=r . .

+ % f (ry/7) Jg’l(rl,t-[r-rl]/c) @rl

., 3

< % (ry/r) Jéil(rl,t-[rl-r]/c) dry
ry=r

/20

+ """T,""‘ (I!) (1/1‘21‘1) [(12+r12 ) - 02 (t"tl)z]_ Jro,l(rl’tl) dtl_ drl

- 4 UhH /) [(rz-rf’) - cz(t-tl){l Tg (T aty) aty dry .

(5.5)

It can be verified through explicit substitution that the
three fleld components for thils first mode, as given in
(5.3-5), satisfy tho reduced equations (3.11-13), if the

source curreat is given by (2,2),

b A e "
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6. NUMERICAL SOLUTION OF INTEGRAL EQUATION

The integral equation to be solved is actually a

coupled pair of equations for the current-density

| components,
I (r,t) = kO.(r,t) + o(r,t) ED. (r,t) (6.12)
r,1'\"? xS‘,l sv) . ’ Er,l s ’ .
Tealmt) = Kpafrt) 4 0(r,b) B, (n,b) , (6.1b)

together with the equations (5.3) and (5.4) which give

the electric field components in terms of.integiations

over the current-densityhcohponents.

L

In the problem of direct interest”, the primary current K

and the transient conductivity function ¢ are both initiated

by the nuclear reaction, and are therefore zero before the

tlme of the detonatlbn.' At a distance r from the-detonation

point, K and 0 will be zero up until a time which is later

than the detonation time by the amount /¢, the propagation

time for gamma rays moving radiaelly outward from the detonation,

If the detonatlon occurs at t==0; then the problem domain
in the (r,t)-pléne is limited to the region to the right of
& dlagonal line throﬁsh the origin, as showm in Figure 1,
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Figure 1, The problem domain, subdivided by a diagonal lattice,
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For the numerical solution, the problem domain 1s
subdivided by a diagonal lattlce, bounded on the left
by the line '

r = ot , - | . (6.22)
and bounded below by the line

r = 0, ~ (6.2Db)

. Pield and current component values are calculated for the

points where lattice lines cross, Integrations over
previously-~calculated current values are expressed as

sunmetions over the small square areas in the lattice,

The lattlce-line spaclng is made sufficlently fine
so that the error introduced through the discreteness

is small, In practice, the line spacings can differ in

'Adifferent portions of the problem domain, and. the small

areas can be rectangular instead of square, if necessary

to make efficient use of computing-machine time and storage.
At the domain boundary (S.Za), in particuler, the lattice
spacing should be small enouéh so that, in the problem
being analyzedu, the secondary current, 0 E, 1is still very
sméll in comparison with the primary current, K. The
initial calculationé of the fleld components can then de

based on the knoim primary current, As the computation

AT AT I 4 M N i A 3 Fo s L
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progresses from one lattice point to the next, and moves
to regions that are not close to the boundery (4.2a),
the secondary current will play an increasingly important

role,

" The numerical solution also requires initial

- ourrent-density values along the inner bouadary (4.2b),

In the problen beinsjconsideredu, this boundary refers

to the immediate neighbornood of the nuclear detonation,
for times subsequent to the detonation time, The asymnetry

which leads to the first-mode portion of the primary current

is the asymmetry produced by the presénce of the ground

or by the presence of an atmospheric air-density~grad1ent.

In practice this asymmetry will not enter until at least

a short distance from the detonation center., Thus the

‘first-mode portion of the primary cﬁrrent can be set equal

to zero along the inner boundary (6.2b), in this application

of the theory. For other applications, physlcal coanslderations

or a simple analytical model 'will generally give an adequate

basis for setting the iniltial current-density values along

A

the boundary (6.2b),

can ‘P Y‘oc:—.-ml :
The numerical iteration preeceeds dlagonally upward

to the right, 1n\;Tg. l, along lattice lines parallel to -

the diagonal boundary (6.22). One step in the iteration

i1s indicated in Figure 2, Here the current components (6.1)
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are beinz computed a£ the lattice point P, with the
integrations (5.3) and (5.4) replaced by summations
over the lattlice squares showm in the figure, Each
square 1s treated as though it were concentrated into
& point source having the location of its central |
polnt, showm here as a dot In the center of the square,
The current assocliated with the square 1ls the average

of the ocurrent values at its corners, previéusly computed,
(The triangles at the bottom can be included separately, )
In the oase of the square which has the point P at

its right-hand corner, the unknown current at P can dbe
approximated through extrapolatlion from the thfee currents

at the other corners, Alternatively, the current at P

can bs included formally in the summation (to which the
integration has been reduced by. this approximate method),
then transferred algebralcally to the left-hand sidé of (6.1),
and solved for as a part of the numerical solution for the

6urrent-density components at P,

Either alternative wlll glve the current at P, and
the lteration can then step to the next point oﬁ the
lgttice. The final result will be e set of current-component
values for all the lattice points, If desired, the program

can then be re-run, with these vzlues substituted when the

current at P is needed for the integral over the square

containing the point P as its right-hand corner, If the

lattice 1s fine enough, the change in current values,-reéﬁlting

.from this re-run, should be small,
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The numerical solution which has been deseribed
will glve the current values at the lattice points, .

when the primary current X and the cbnductivity ¢ are

inserted, along with the boundary values for the
ourrent on the inner boundary (6.2b). The transient
eleotrioc and magnetioc field oomponeﬁts will also be
glven, throush integration of this current distributioen,
using (5.3-5), The result will be consistent with
causallty re@uirements, provided the lattice is
sufficiently fine., In practice, if the solution is

‘not changed significsntly when the lattice is made
still finer, then it was already sufficiently fine,

" While Phis 111u§tration has referred to the first
" mode, the mode with n=1, tﬁe sene general conslderations
dpply to the solution of the integral equation for any
‘higher mpde, as long as the modes are separable, If
the conductivity function is not given by o(r,t), but
by & function which depends upon 6 as well, then the
modes will be coupled together and (6.1) will be replaced
‘ by an extended matrix equation, coupling together the-
gurrent conpcnents for the different modes, In this case,
e generallzed version of the iteratlon described here can

still be used, wlthout violating the causality requirements,
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7. NON-CAUSAL SOLUTION

For ocomparison, a non-causal solution2 bf Maxwell's
equations, in the reduced form given in (3.11-13), will
be’desoribed briefly, In this non-causal solutlon,
the same problem domain of Fig, 1 has been used, but
the lattice has the orientation showm here in Figure 3.
The iteration progresses vertloelly upward from the
boundary (6.éb), and requires initial values along

this boundary.and also along and near the boundary (6.2a),

An iteration step 1s shoim in Fiéure L, The field
components ere caloulated at the point P, based on the
primary current and the conductivity at the point X |
and the previously-calculated fleld coamponents at the
three points Q. A finlte-difference version of the
equations (3.11-13) is used in this calculation, The
result is a numerical solution of lMaxwell's equatlons,
for each step, but each step gives a mixing of advanced
and retarded solutions since the causality requlrements
.have not been 1mposed'1n eny way. Thus the result 1s'
& mathematical solution of laxwell's equations which has

2 doubiful relationship to physical phenomena,




_—

r Page 143
4
i
>t
Figure 3. The pfcoblem donain; subdivided by a rectangular lattlce;
§

. P TN




L N

E Page 149
; r

¥ A

é

O —8O

O—W -

/1

.Figure 4, A non-causal iteration step,




Page 150

It can be seen from Fig. 4 that the introduction of
en intensification of the primary current at the point X
that 1s showm willl have effects on polnt P, as showm, and hence
alsb on other points P which lle directly abofe this one
in the figure, Thus a current change at an inner radius
willl lead to field changes at an outer radius which are: °
essentially simultaneous, and mgst'have traveled faster than ¢,
These .effects -are physically inadmissible , yet they do
satisfy the finite-difference form of Maxwell's_equations

which has been used in the iteration step of Fig, &.

The solution, of course, 1s not to change'to another

form of iteration step which Just translates Egs., (3.11-13)

from differeantial forh to difference form in some other

way. The solution, obvlously, .to the problem of §olvins
Maxwell's equations numerically in the (r,t)-vlane,

is .to impose the causality requirements at an earlier

étage, when the equations are in four-dimensionai space~-time,
and to select the retarded solution at the beginning.

The reduction to the (r,t)-plane then leads to the

retarded Hertz vector (4.3) and the retarded fields
illustrated in (5.3-5).
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8, CONCLUSIONS

In the general case,.a-qumericallsolution of
‘Maxwell's equations will give a superposition of
electromagne*ic phenomena which can occur in a
yhysical situation,and other phenomena which cannot
occur physically. If the mathematical solution is
tq'deécribe o physical process, then the analysis
must be éet up in such a way that only the retarded-field

solution of laxwell's equations is admitted, while the

advanced fields ‘are excluded from the beginning.

In problems where.there is a center of symmetry or
of partial Symmetry, a‘desciiptlon'of the problem in terms
.6f spherical polar coordinates is appropriéte. In certaln
problens an expansion in vector spherical harmonlcs
provides a separatioﬁ into modes, and a reduction of the
four-dimensional problém into a set of two-dimensional
probleus, one for esch mode. In the reduced problem, the

variables are the radial distance r and the time ¢,

If retardation 1s ignored, then a hon-bausai solution
in the (r,t)-plane can be obtained through & point-to-point
numerical integration of a finite-difference verslon of
Maxwell's equations, as they appear when reduced to two

dimensions by the separation into vector-spherical-harmonic
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modes, This solution will in the general case violate
the causality requirement and must therefore be ruled

out on physical grounds,

When retardation is incorporated at the beglnning
of the analysis, before the separation of varilables,
then the physical causality requirement will be satisfied.
The reduction to the (r,t)-plane can still be carried out,
but in this case the result is an 1htegral equation to
be solved numerically, rather than a differential equation,
The solqtion of the integral equatloﬁ wili provide one
of the possible solutions of the differential equation,

. but will exclude the non-physical solutions,

The-integral equation can be solved numerically
wlth the aid of a discrete lattice in the (r,t)-plane,
Each 1ﬁeration step then involves a summation over all
the causally-accessible lattice positions in the region
éovered by previous iteration steps, The iteration
_ Procedure resembles.in a mechanical way the lteration
used in the non-causal finite-difference solutibn, so that
the conversion of a cémputing-machine progran from the
, non-causal solution to the causal solution can readily

be carried out,
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